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Class structure

Topics for today:

review of the Gaussian pdf

review of least-squares

leverage scores definition and properties

leverage scores for anomaly detection
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Gaussian pdf

one dimensional Gaussian

N (µ, σ2) = 1√
2πσ2 exp(−

(x−µ)2

2σ2 )

multi-dimensional Gaussian

N (µ,Σ) = 1√
det(2πΣ)

exp{− 1
2 (x − µ)TΣ−1(x − µ)}

In general, we say that we sample from a standard Gaussian variable:

x ∼ N (0,1) or x ∼ N (0, Id )

Note: there is already a hint that “Σ is the square of something”
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Gaussian pdf

statistical variables have two important properties:

the mean of the variable: E[x] = µ

the variance of the variable: E[(x − E[x ])(x − E[x ])T ] = Σ

An exercise for you: you are in the one-dimensional setting and you have a
Gaussian variable x ∼ N (µ, σ2) and then we need to build a new variable
y = ax + b. what sort of random variable is this?
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Gaussian pdf

An exercise for you: you are in the one-dimensional setting and you have a
Gaussian variable x ∼ N (µ, σ2) and then we need to build a new variable
y = ax + b. what sort of random variable is this?

E[y ] = E[ax + b] = aµ+ b

E[(y − E)(y − E)T ] = a2E[(x − µ)(x − µ)] = a2σ2

where we use the fact that E[y − E[y ]] = aE[X − µ]
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Gaussian pdf

Another exercise for you: you are given a one-dimensional standard
Gaussian variable x ∼ N (0,1), how do you convert it into another standard
Gaussian variable with mean µ and variance σ2?

y = µ+ σx

What would be the reverse of this?

y = x−µ
σ (we standardize the random variable)
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Gaussian pdf

Another exercise for you: you are given a d-dimensional standard Gaussian
variable x ∼ N (0, Id ), how do you convert it into another standard Gaussian
variable with mean µ and variance Σ?

y = µ+ Lx where LLT = Σ (from the Cholesky factorization of Σ, this is the
“square root” for a matrix).
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Least-squares

the setup in this class is the following:

we are in the supervised setting

we are given a dataset where each data point has d features

we are given n data points xi ∈ Rd , the features

we are given n labels for these data points yi ∈ R

the goals are:

assume a linear predictor β ∈ Rd

estimate the best linear predictor from the data, i.e., xT
i β ≈ yi for all

i = 1, . . . ,n

pick the squared error to minimize (xT
i β − yi)

2 for all i = 1, . . . ,n

overall objective function is
∑n

i=1(x
T
i β − yi)

2
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Least-squares

overall objective function is:

n∑
i=1

(xT
i β − yi)

2 (1)

this can be written in matrix form as:

∥Xβ − y∥2
F (2)

X is an n × d matrix where the i th row is xT
i

y is an n-dimensional vector of labels

the unknown is β the d-dimensional vector

we have used the Frobenius norm ∥A∥2
F = tr(AT A) =

∑n
i=1

∑d
j=1 = |Aij |2,

for vectors this is just ∥x∥2
F = xT x =

∑n
i=1 |xi |2 = ∥x∥2

2.
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Least-squares

The least-squares problem solves the following:

minimize
β

∥Xβ − y∥2
F (3)

when n = d we have β⋆ = X−1y

when n > d we have β⋆ = (XT X)−1XT y

when n < d we have β⋆ = XT (XXT )−1y

how do we get these?

what happens if we replace the squared with absolute value?

how do we compute β⋆ in each case above?
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Leverage scores

There are several things that the least-squares assumes:

we assume that the data was generated as y = Xβ + e where e is
considered to be a standard Gaussian random variable: E[e] = 0 and
var[e] = σ2In

note that var[y] = σ2In

the the least-squares solution is given by β⋆ = (XT X)−1XT y

the projected values are given by ŷ = Xβ⋆ = X(XT X)−1XT y

and the the empirical error is given by ê = y − ŷ = (In − H)y where
H = X(XT X)−1XT

then, var[ŷ] =

σ2H2 and var[ê] = σ2(In − H)2
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H = X(XT X)−1XT
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Leverage scores

A few properties for H:

H is symmetric.
Proof.

Check that H = HT .

H is positive semi-definite.
Proof. True because (XT X)−1 is positive definite.

H2 = H.
Proof. Use the definition and simplify the expression.

(In − H)2 = (In − H).
Proof. Use the definition and square the quantity explicitly.

tr(H) = d
Proof. tr(H) = tr(X(XT X)−1XT ) = tr(XT X(XT X)−1) = tr(Id ) = d .
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Leverage scores

The leverage scores are the diagonal elements of the H matrix, i.e.,
hi = Hii = xT

i (X
T X)−1xi .

We have the following properties:

0 ≤ hi ≤ 1.∑n
i=1 hi = d .

Proof.

The diagonal of H has only positive entries that sum up to d .
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Leverage scores

Why are these scores so important? They show the self-sensitivity of each
residual:

hii =
∂ŷi

∂yi
(4)

This measures the degree by which the i th measured value yi influences the
i th predicted value ŷi .

What are considered high values? Those who deviate a lot from the expected
value of the leverage scores. What is this value?

h̄ = d
n .

Anomaly Detection 14 / 16



Leverage scores

Why are these scores so important? They show the self-sensitivity of each
residual:

hii =
∂ŷi
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What are considered high values? Those who deviate a lot from the expected
value of the leverage scores. What is this value? h̄ = d

n .

Anomaly Detection 14 / 16



Leverage scores

Because we want to know how much the parameters vary if we remove a
single data point from the data set we have the following:

β⋆ − (β(−i))⋆ =
(XT X)−1xi(yi − xT

i β)

1 − hii
(5)
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What is an anomaly
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