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Outline

▶ clustering, distance and density
▶ k-Nearest Neighbors
▶ Local Outlier Factor
▶ Local Correlation Integral

The course references are Aggarwal 2017, Ch.4 with initial papers
for K-NN by Cover and Hart 1967 and LOF by Breunig et al. 2000.



Algorithm Types

Given a data point, discriminate based on
▶ Clustering

▶ non-membership to any data cluster of the data point
▶ distance to other clusters
▶ size of the closest cluster
▶ binary: either belongs to cluster else is an anomaly

▶ Distance
▶ proximity: distance to its k-nearest neighbor (KNN)
▶ variants change distance type or average the distance score
▶ large KNN distances define the anomalies
▶ high granularity results
▶ high algorithmic complexity (e.g. O(N2))

▶ Density
▶ split data space into regions
▶ compute the local density of each region
▶ data density is turned into anomaly score for each point
▶ clustering partitions data-points, density partitions data-space



Data Points vs Data Space

Figure: Data points and data space (Aggarwal 2017)



k-Nearest Neigbors



Nearest Neighbors

Definition
Exact KNN. The anomaly score of a point x is given by its
distance to its k-th nearest neighbor.

Assumption: anomalous data points are further away than normal
data points.

Example
We can identify small isolated clusters of k0 anomalous data-points
by selecting a value k ≥ k0 in the KNN algorithm.



KNN: the choice of k0

Example
We can identify small isolated clusters of k0 anomalous data-points
by selecting a value k ≥ k0 in the KNN algorithm.

Figure: The choice of k ≥ k0 (Aggarwal 2017)



Nearest Neighbors Algorithm

How do we implement this?

1. Choose a data-point: Let x be an m-dimensional point from the
dataset X ∈ Rm×N .

2. Choose a distance function: ∥x − y∥2 where y ̸= x and y ∈ X .

3. Compute the distances:
dist(x) = {s | s = ∥x − y∥2 , ∀y ∈ X , y ̸= X}.

4. Set the anomaly score: knn(x) = mink(dist(x)) where mink(·)
is the function computing the k-th smallest number in a set.

5. Repeat steps 1–4 for all points in X .
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KNN Granularity

What is the complexity of the above?

O(N2)!

Remark
Granularity. Distance-based methods have a higher granularity
compared to cluster based methods. We compare each point to
the rest of the points, whereas for clusters we only compare with
the centroids.

Mitigations:
▶ pre-select a sample of data points Ñ ≪ N
▶ all N points are scored based on these Ñ scores
▶ smoothing or averaging techniques can be applied

post-processing to reduce sensibility to choice of Ñ
▶ converges to a sort of clustering method
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KNN Parameters

How do we choose k?

Kind reminder. In anomaly detection we are in the unsupervised
setting where we can not perform parameter tuning.

General approach. Naturally we train multiple KNN models
where we vary k and create an ensemble where voting methods are
employed in order to decide which data is anomalous.

Particular approach. Smoothen the anomaly score so that it is
less sensible to a particular choice of k.
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KNN Variants: Average KNN Scores

Definition
Average KNN score. The anomaly score of x ∈ X is its average
distance to its k-nearest neighbors.

Average KNN is:
▶ better suited for unsupervised grid-search where a range of k’s

are used
▶ it is less sensitive to the particular choices for k
▶ averages Exact-KNN over a range of k
▶ provides worse results than the true k value in the Exact-KNN

variant

Formally, avgknn(x) = µk(dist(X )), where µk(·) is the average of
the smallest k numbers in the set.



KNN Variants: Harmonic KNN Scores

Definition
Harmonic KNN score. The anomaly score of x ∈ X is its harmonic
mean of its k-nearest neighbors distances.

The harmonic mean is H(X ) = n∑
i

1
xi

.

Formally, hknn(x) = Hk(dist(X )), where Hk(·) is the harmonic
mean of the smallest k numbers in the set.

Harmonic KNN is:
▶ harmonic mean is very sensible to small distances. why?
▶ we can use greater values of k. how can we profit?
▶ use k = N and be parameter-free!
▶ provides good results
▶ it is no longer sensitive to the particular choices for k
▶ worse results than the true k value in the Exact-KNN
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Local Outlier Factor



Problems: Density and Cluster Orientation

Figure: Data Locality (Aggarwal 2017)

▶ impacts data density and cluster orientation
▶ varying density across data space
▶ distance-based limitations when density variation is high



Example: Distance versus Locality

Figure: Distance versus Locality (Aggarwal 2017)

▶ two cluster with different sparsity
▶ A requires small distance threshold
▶ if k is small, then lots of false-positives in the sparse cluster
▶ need multiple distance thresholds in heterogeneous data

distributions



Local Outlier Factor (LOF)

Let Lk(·) be the set of points that are the knn of a given point:

Lk(x) = {y | ∥x − y∥ ≤ knn(x), ∀y ∈ X}

this can contain more than k points, but not less!

Let Rk(·, ·) be the reachability distance of two points:

Rk(x , y) = max{∥x − y∥ , knn(y)}

▶ ∥x − y∥: when y inside dense region and x is far away
▶ knn(y): when x and y are close, but knn(y) is large;

smoothing!
▶ larger values of k will bring a greater smoothing effect
▶ reachability distances become similar with large k’s
▶ reachability is not symmetric!
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LOF: Reachability

Reachability is not symmetric!

Proof in class
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LOF: Average Reachability Distance

We now define the average reachability of a point in regards to its
KNN’s:

ARk(x) = µy∈Lk(x)Rk(x , y)

where µ is the average of each pair Rk(x , y) with y ∈ Lk(x).

The inverse of ARk is defined as the reachability density.



LOF: Scoring

The local outlier factor is the mean average reachability of x
compared to its neighbors average:

LOFk(x) = µy∈Lk(x)
ARk(x)
ARk(y) = ARk(x)µy∈Lk(x)

1
ARk(y)

▶ the sum of distance ratios act as data normalization
▶ LOF score is normalized reachability distance of a given point
▶ normalization factor is the harmonic mean
▶ homogeneous distributions have LOF ≈ 1
▶ this solves the problem in Figure 4
▶ anomalous points have LOF ≫ 1
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Example: LOF Scoring
LOF normalization factor is the harmonic mean

LOFk(x) = µy∈Lk(x)
ARk(x)
ARk(y) = ARk(x)

Hy∈Lk(x)ARk(y)

Source: https://en.wikipedia.org/wiki/Local_outlier_factor

https://en.wikipedia.org/wiki/Local_outlier_factor
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LOF: Properties

A few remarks about LOF:

▶ we can use other means of smoothing for normalization
▶ can be seen as relative distance-based approach with

smoothing
▶ adjusts to varying data density using relative distances
▶ pseudo-density: inverse of smoothed reachability
▶ its a relaxed version of density (see LOCI method)

Variants
▶ raw distances instead of reachability distances
▶ arithmetic mean instead of harmonic mean
▶ local distance-based outlier factor (LDOF) by Zhang, Hutter,

and Jin 2009 uses averaged pairwise distances from Lk
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LOF: Data and Parameters

Duplicate points in X :
▶ duplicate data in X will result in zero harmonic mean!

▶ solution: use other metrics then harmonic mean
▶ solution: use regularization

LOFk(x) = α + ARk(x)
α + Hy∈Lk(x)ARk(y)

Choosing k:
▶ Breunig et al. 2000 recommend choosing max Lk(x) after

grid-search
▶ tightly coupled data within a single data distribution will

impact the scores
▶ small values of k increases false-positive risks
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Local Correlation Integral (LOCI)

LOCI (Papadimitriou et al. 2003) is a close relative of LOF that
uses standard density.

Let the counting neighborhood of data point x be:

M(x , ε) = |{y | ∥x − y∥ ≤ ε, ∀y ∈ X}|

where | · | is the sets cardinality operator.

Then the average density in the δ-neighborhood of x

AM(x , ε, δ) = µy :∥x−y∥≤δM(y , ε)

where δ > ε is the sampling neighborhood of x .

In practice we choose ε = cδ where c = 1
2 is a popular choice.
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LOCI: Scoring

Let us now define the equivalent neighborhood-aware averaging
score of a point

MDEF (x , ε, δ) = 1 − M(x , ε

AM(X , ε, δ

called multip-granularity deviation factor.

The greater the MDEF value, the greater its anomalous score.

Binary labels are obtained through the use of standard deviation

σ(x , ε, δ) =
STDy :∥x−y∥≤δM(x , ε)

AM(X , ε, δ
)

where STD computes the standard deviation of the sampling
neighborhood.

In practice MDEF ≥ kσ is used with k = 3 being a popular choice
inspired from statistics.
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LOCI: Parameters

Choosing ε and δ:

▶ only one parameter if ε = cδ with c = 1
2

▶ grid-search multiple values of δ

▶ popular options is to start with neighborhoods of 20 up to N
▶ anomaly if MDEF is large within any of the δ settings
▶ sub-sample considered neighborhoods based on invariance to δ

choice
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