
Anomaly Detection
Isolation Forest

Andrei Hîji

Computer Science Department

Faculty of Mathematics and Computer Science

University of Bucharest

Email: andrei-iulian.hiji@unibuc.ro

Outline

▶ Isolation Forest
▶ Extended Isolation Forest
▶ Generalized Isolation Forest
▶ Deep Isolation Forest

The course references are the initial paper for IForest by Liu, Ting,
and Zhou 2008 and its variations: Extended Isolation Forest Hariri,
Kind, and Brunner 2019, Generalized Isolation Forest Lesouple
et al. 2021, Deep Isolation Forest Xu et al. 2023

Normal instances profiling vs explicit anomaly isolation

▶ Most methods try to profile normal instances and then identify
those instances that don’t comply with the resulted profile
▶ not optimized for anomaly detection
▶ existing methods have high computational complexity

(constraints on data size and dimensionality)

▶ Explicit isolation exploits 2 properties of anomalies
▶ fewer instances (minority)
▶ very different attributes (compared to normal instances)

Normal instances profiling vs explicit anomaly isolation

▶ Most methods try to profile normal instances and then identify
those instances that don’t comply with the resulted profile
▶ not optimized for anomaly detection
▶ existing methods have high computational complexity

(constraints on data size and dimensionality)
▶ Explicit isolation exploits 2 properties of anomalies

▶ fewer instances (minority)
▶ very different attributes (compared to normal instances)

Anomaly isolation - basic idea

A binary tree - used to isolate every instance by recursively
partitioning the data space with random binary splits
▶ root node will contain initial data
▶ each binary split will create 2 child nodes
▶ stop when each instance is isolated

Assumption: anomalies will be isolated faster (closer to the root
of the tree because they are ’few and different’)

Isolation Tree (iTree)

Definition
Let T be a node of an isolation tree. T can be an external-node
with no child, or an internal-node with one test and exactly two
child nodes (Tl ,Tr). A test consists of an attribute q and a split
value p such that the test q < p divides data points into Tl and Tr

iTree properties:
▶ proper binary tree (each node has 0 or 2 child nodes)
▶ a fully grown iTree has n external nodes (where n-number of

instances)
▶ a fully grown iTree has n − 1 internal nodes

Isolation Tree (iTree)

Definition
Let T be a node of an isolation tree. T can be an external-node
with no child, or an internal-node with one test and exactly two
child nodes (Tl ,Tr). A test consists of an attribute q and a split
value p such that the test q < p divides data points into Tl and Tr

iTree properties:
▶ proper binary tree (each node has 0 or 2 child nodes)
▶ a fully grown iTree has n external nodes (where n-number of

instances)
▶ a fully grown iTree has n − 1 internal nodes

How to build an iTree?

Let X = {x1, x2, ..xn} - a sample of n instances where xi ∈ Rd

1. Randomly select an attribute q

2. Randomly choose a split value p

3. Using the test q < p divide X in Xl and Xr

4. Recursively partition Xl and Xr using steps 1, 2, 3 until:
▶ the iTree reaches a height limit
▶ |X | = 1
▶ all instances in X have the same values

How to build an iTree?

Let X = {x1, x2, ..xn} - a sample of n instances where xi ∈ Rd

1. Randomly select an attribute q

2. Randomly choose a split value p

3. Using the test q < p divide X in Xl and Xr

4. Recursively partition Xl and Xr using steps 1, 2, 3 until:
▶ the iTree reaches a height limit
▶ |X | = 1
▶ all instances in X have the same values

How to build an iTree?

Let X = {x1, x2, ..xn} - a sample of n instances where xi ∈ Rd

1. Randomly select an attribute q

2. Randomly choose a split value p

3. Using the test q < p divide X in Xl and Xr

4. Recursively partition Xl and Xr using steps 1, 2, 3 until:
▶ the iTree reaches a height limit
▶ |X | = 1
▶ all instances in X have the same values

How to build an iTree?

Let X = {x1, x2, ..xn} - a sample of n instances where xi ∈ Rd

1. Randomly select an attribute q

2. Randomly choose a split value p

3. Using the test q < p divide X in Xl and Xr

4. Recursively partition Xl and Xr using steps 1, 2, 3 until:
▶ the iTree reaches a height limit
▶ |X | = 1
▶ all instances in X have the same values

How to build an iTree?

Let X = {x1, x2, ..xn} - a sample of n instances where xi ∈ Rd

1. Randomly select an attribute q

2. Randomly choose a split value p

3. Using the test q < p divide X in Xl and Xr

4. Recursively partition Xl and Xr using steps 1, 2, 3 until:
▶ the iTree reaches a height limit
▶ |X | = 1
▶ all instances in X have the same values

Normal point vs anomaly isolation

Figure: Isolation process (Liu, Ting, and Zhou 2008)

▶ 12 random partitions needed to isolate xi ; only 4 needed for xo

Anomaly score derivation

Definition
Path Length h(x) of a point x represents the number of edges x
traverses in an iTree from the root node until the traversal is
terminated at an external node.

Why Path length can’t be used as an anomaly score?

We need a bounded interval, independent of number of instances n

Anomaly score derivation

Definition
Path Length h(x) of a point x represents the number of edges x
traverses in an iTree from the root node until the traversal is
terminated at an external node.

Why Path length can’t be used as an anomaly score?

We need a bounded interval, independent of number of instances n

Anomaly score derivation

Properties of path length:
▶ maximum path length grows in the order of n

▶ average path length grows in the order of log(n)

Equivalence of iTrees with Binary Search Trees:
▶ both are proper binary trees
▶ a path search ending in an external node is equivalent with an

unsuccessful search in a BST
▶ average path length of an iTree = average path length of

unsuccessful search in BST
▶ c(n) = 2H(n − 1) − 2(n−1

n)
▶ n - number of instances
▶ H(i) (harmonic number) = ln(i) + 0.5772156649 (Euler’s

constant)

Anomaly score derivation

Properties of path length:
▶ maximum path length grows in the order of n
▶ average path length grows in the order of log(n)

Equivalence of iTrees with Binary Search Trees:
▶ both are proper binary trees
▶ a path search ending in an external node is equivalent with an

unsuccessful search in a BST
▶ average path length of an iTree = average path length of

unsuccessful search in BST
▶ c(n) = 2H(n − 1) − 2(n−1

n)
▶ n - number of instances
▶ H(i) (harmonic number) = ln(i) + 0.5772156649 (Euler’s

constant)

Anomaly score derivation

Properties of path length:
▶ maximum path length grows in the order of n
▶ average path length grows in the order of log(n)

Equivalence of iTrees with Binary Search Trees:
▶ both are proper binary trees

▶ a path search ending in an external node is equivalent with an
unsuccessful search in a BST

▶ average path length of an iTree = average path length of
unsuccessful search in BST

▶ c(n) = 2H(n − 1) − 2(n−1
n)

▶ n - number of instances
▶ H(i) (harmonic number) = ln(i) + 0.5772156649 (Euler’s

constant)

Anomaly score derivation

Properties of path length:
▶ maximum path length grows in the order of n
▶ average path length grows in the order of log(n)

Equivalence of iTrees with Binary Search Trees:
▶ both are proper binary trees
▶ a path search ending in an external node is equivalent with an

unsuccessful search in a BST

▶ average path length of an iTree = average path length of
unsuccessful search in BST

▶ c(n) = 2H(n − 1) − 2(n−1
n)

▶ n - number of instances
▶ H(i) (harmonic number) = ln(i) + 0.5772156649 (Euler’s

constant)

Anomaly score derivation

Properties of path length:
▶ maximum path length grows in the order of n
▶ average path length grows in the order of log(n)

Equivalence of iTrees with Binary Search Trees:
▶ both are proper binary trees
▶ a path search ending in an external node is equivalent with an

unsuccessful search in a BST
▶ average path length of an iTree = average path length of

unsuccessful search in BST

▶ c(n) = 2H(n − 1) − 2(n−1
n)

▶ n - number of instances
▶ H(i) (harmonic number) = ln(i) + 0.5772156649 (Euler’s

constant)

Anomaly score derivation

Properties of path length:
▶ maximum path length grows in the order of n
▶ average path length grows in the order of log(n)

Equivalence of iTrees with Binary Search Trees:
▶ both are proper binary trees
▶ a path search ending in an external node is equivalent with an

unsuccessful search in a BST
▶ average path length of an iTree = average path length of

unsuccessful search in BST
▶ c(n) = 2H(n − 1) − 2(n−1

n)
▶ n - number of instances
▶ H(i) (harmonic number) = ln(i) + 0.5772156649 (Euler’s

constant)

Isolation forest

▶ IF simply builds an ensemble of independent iTrees

▶ each iTree is built from a different sub-sample of the original
data (sampling is conducted without replacement)

▶ each iTree will be able to identify different types of anomalies
(due to sub-sampling and random partitioning)

▶ IF only needs 2 parameters:
▶ number of trees to build - t
▶ sub-sampling size ψ

Isolation forest

▶ IF simply builds an ensemble of independent iTrees
▶ each iTree is built from a different sub-sample of the original

data (sampling is conducted without replacement)

▶ each iTree will be able to identify different types of anomalies
(due to sub-sampling and random partitioning)

▶ IF only needs 2 parameters:
▶ number of trees to build - t
▶ sub-sampling size ψ

Isolation forest

▶ IF simply builds an ensemble of independent iTrees
▶ each iTree is built from a different sub-sample of the original

data (sampling is conducted without replacement)
▶ each iTree will be able to identify different types of anomalies

(due to sub-sampling and random partitioning)

▶ IF only needs 2 parameters:
▶ number of trees to build - t
▶ sub-sampling size ψ

Isolation forest

▶ IF simply builds an ensemble of independent iTrees
▶ each iTree is built from a different sub-sample of the original

data (sampling is conducted without replacement)
▶ each iTree will be able to identify different types of anomalies

(due to sub-sampling and random partitioning)
▶ IF only needs 2 parameters:

▶ number of trees to build - t

▶ sub-sampling size ψ

Isolation forest

▶ IF simply builds an ensemble of independent iTrees
▶ each iTree is built from a different sub-sample of the original

data (sampling is conducted without replacement)
▶ each iTree will be able to identify different types of anomalies

(due to sub-sampling and random partitioning)
▶ IF only needs 2 parameters:

▶ number of trees to build - t
▶ sub-sampling size ψ

IForest final anomaly score

▶ x - an instance

▶ c(n) - average of h(x) given the number of instances n
▶ we use c(n) to normalize h(x)
▶ final anomaly score becomes:

s(x , n) = 2− E(h(x))
c(n)

▶ E (h(x)) - average of h(x) from all the iTrees of the IForest
▶ 0 < s ≤ 1

IForest final anomaly score

▶ x - an instance
▶ c(n) - average of h(x) given the number of instances n
▶ we use c(n) to normalize h(x)

▶ final anomaly score becomes:

s(x , n) = 2− E(h(x))
c(n)

▶ E (h(x)) - average of h(x) from all the iTrees of the IForest
▶ 0 < s ≤ 1

IForest final anomaly score

▶ x - an instance
▶ c(n) - average of h(x) given the number of instances n
▶ we use c(n) to normalize h(x)
▶ final anomaly score becomes:

s(x , n) = 2− E(h(x))
c(n)

▶ E (h(x)) - average of h(x) from all the iTrees of the IForest
▶ 0 < s ≤ 1

IForest anomaly score interpretation

Figure: Relationship of expected path length and anomaly score (Liu,
Ting, and Zhou 2008)

▶ E (h(x)) → c(n) =⇒ s → 0.5
▶ E (h(x)) → 0 =⇒ s → 1 (anomaly)
▶ E (h(x)) → n − 1 =⇒ s → 0 (normal instances)

IForest anomaly score interpretation

Figure: Relationship of expected path length and anomaly score (Liu,
Ting, and Zhou 2008)

▶ E (h(x)) → c(n) =⇒ s → 0.5

▶ E (h(x)) → 0 =⇒ s → 1 (anomaly)
▶ E (h(x)) → n − 1 =⇒ s → 0 (normal instances)

IForest anomaly score interpretation

Figure: Relationship of expected path length and anomaly score (Liu,
Ting, and Zhou 2008)

▶ E (h(x)) → c(n) =⇒ s → 0.5
▶ E (h(x)) → 0 =⇒ s → 1 (anomaly)

▶ E (h(x)) → n − 1 =⇒ s → 0 (normal instances)

IForest anomaly score interpretation

Figure: Relationship of expected path length and anomaly score (Liu,
Ting, and Zhou 2008)

▶ E (h(x)) → c(n) =⇒ s → 0.5
▶ E (h(x)) → 0 =⇒ s → 1 (anomaly)
▶ E (h(x)) → n − 1 =⇒ s → 0 (normal instances)

IForest anomaly score interpretation

Figure: Anomaly score contour for a Gaussian distribution (Liu, Ting, and
Zhou 2008)

▶ contour lines for different scores
▶ anomalies can be identified using a threshold value for score s

IForest anomaly score interpretation

Figure: Anomaly score contour for a Gaussian distribution (Liu, Ting, and
Zhou 2008)

▶ contour lines for different scores
▶ anomalies can be identified using a threshold value for score s

Masking and Swamping
▶ Masking - the number of anomalies is too large, not allowing

the model to detect them

▶ Swamping - normal instances are wrongly identified as
anomalies because they are too close to anomalies

Figure: Effects of masking and swamping (Liu, Ting, and Zhou 2008)

Masking and Swamping
▶ Masking - the number of anomalies is too large, not allowing

the model to detect them
▶ Swamping - normal instances are wrongly identified as

anomalies because they are too close to anomalies

Figure: Effects of masking and swamping (Liu, Ting, and Zhou 2008)

Masking and Swamping
▶ Masking - the number of anomalies is too large, not allowing

the model to detect them
▶ Swamping - normal instances are wrongly identified as

anomalies because they are too close to anomalies

Figure: Effects of masking and swamping (Liu, Ting, and Zhou 2008)

IForest properties

▶ can only build partial iTrees since we are not interested to
isolate every normal point

▶ no distance or density measure is needed, resulting in a small
computational cost

▶ linear time complexity and low memory requirement
▶ can handle datasets with large size and dimensionality

IForest properties

▶ can only build partial iTrees since we are not interested to
isolate every normal point

▶ no distance or density measure is needed, resulting in a small
computational cost

▶ linear time complexity and low memory requirement
▶ can handle datasets with large size and dimensionality

IForest properties

▶ can only build partial iTrees since we are not interested to
isolate every normal point

▶ no distance or density measure is needed, resulting in a small
computational cost

▶ linear time complexity and low memory requirement
▶ can handle datasets with large size and dimensionality

IForest training
iTrees are built with recursive partitioning until all instances are
isolated or the height limit is reached (l = ceiling(log2 ψ))

Figure: Training algorithm (Liu, Ting, and Zhou 2008)

IForest training

Figure: Training algorithm for each iTree (Liu, Ting, and Zhou 2008)

IForest training details

▶ sub-sampling size ψ = 256 (height limit l = 8)
▶ the ensemble size t = 100
▶ training complexity: O(tψ logψ)

IForest inference details

Figure: PathLength algorithm (Liu, Ting, and Zhou 2008)

▶ inference complexity: O(nt logψ)

IForest inference details

Figure: PathLength algorithm (Liu, Ting, and Zhou 2008)

▶ inference complexity: O(nt logψ)

IForest limitations

Figure: Data and anomaly score map for IF (Hariri, Kind, and Brunner
2019)

▶ 2-dimensional normal distributed points
▶ darker areas → higher anomaly scores

IForest limitations

Figure: Data and anomaly score maps for IF (Hariri, Kind, and Brunner
2019)

IForest limitations

Figure: Branch cuts generated by IF (Hariri, Kind, and Brunner 2019)

▶ brach cuts tend to cluster where most of the data points reside
▶ the fact that separating hyperplanes can only be horizontal or

vertical causes the presence of many separating hyperplanes in
regions with low density

IForest limitations

Figure: Branch cuts generated by IF (Hariri, Kind, and Brunner 2019)

▶ brach cuts tend to cluster where most of the data points reside
▶ the fact that separating hyperplanes can only be horizontal or

vertical causes the presence of many separating hyperplanes in
regions with low density

Rotated trees

▶ every individual tree is built using standard IF

▶ before that, the sub-sample used for each tree is rotated by a
random angle

▶ in testing phase, before computing PathLength, we have to
rotate the test data by the angle corresponding to each tree

▶ the bias (corresponding to standard IF) still exists, but now
it’s different for each tree

Rotated trees

▶ every individual tree is built using standard IF
▶ before that, the sub-sample used for each tree is rotated by a

random angle

▶ in testing phase, before computing PathLength, we have to
rotate the test data by the angle corresponding to each tree

▶ the bias (corresponding to standard IF) still exists, but now
it’s different for each tree

Rotated trees

▶ every individual tree is built using standard IF
▶ before that, the sub-sample used for each tree is rotated by a

random angle
▶ in testing phase, before computing PathLength, we have to

rotate the test data by the angle corresponding to each tree

▶ the bias (corresponding to standard IF) still exists, but now
it’s different for each tree

Rotated trees

▶ every individual tree is built using standard IF
▶ before that, the sub-sample used for each tree is rotated by a

random angle
▶ in testing phase, before computing PathLength, we have to

rotate the test data by the angle corresponding to each tree
▶ the bias (corresponding to standard IF) still exists, but now

it’s different for each tree

Extended Isolation Forest

Figure: EIF partitions for anomaly and normal point (Hariri, Kind, and
Brunner 2019)

Extended Isolation Forest

Instead of a random attribute and a random value for it we now
need:
▶ a random slope for the separating hyperplane (normal vector n⃗

to the hyperplane)
▶ a random intercept p⃗ for the hyperplane

Partitioning criteria now becomes:

(x⃗ − p⃗) ∗ n⃗ ≤ 0

If the condition holds x⃗ goes to the left branch, else to the right

Extended Isolation Forest

Instead of a random attribute and a random value for it we now
need:
▶ a random slope for the separating hyperplane (normal vector n⃗

to the hyperplane)
▶ a random intercept p⃗ for the hyperplane

Partitioning criteria now becomes:

(x⃗ − p⃗) ∗ n⃗ ≤ 0

If the condition holds x⃗ goes to the left branch, else to the right

Extended Isolation Forest

Figure: Branch cuts generated by EIF (Hariri, Kind, and Brunner 2019)

Regions with higher density contain most of the branch cuts while
regions with low density don’t end up with many separating
hyperplanes (as in standard IF case)

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the single blob, normally distributed
(Hariri, Kind, and Brunner 2019)

▶ low-score bands (present in IF) disappear in EIF
▶ in EIF score increases monotonically in every direction as we

move away from data mean

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the single blob, normally distributed
(Hariri, Kind, and Brunner 2019)

▶ low-score bands (present in IF) disappear in EIF

▶ in EIF score increases monotonically in every direction as we
move away from data mean

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the single blob, normally distributed
(Hariri, Kind, and Brunner 2019)

▶ low-score bands (present in IF) disappear in EIF
▶ in EIF score increases monotonically in every direction as we

move away from data mean

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the two blobs, normally distributed
(Hariri, Kind, and Brunner 2019)

▶ "ghost" regions from the IF score map disappear

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the two blobs, normally distributed
(Hariri, Kind, and Brunner 2019)

▶ "ghost" regions from the IF score map disappear

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the sinusoidal data (Hariri, Kind, and
Brunner 2019)

▶ both Rotated IF and EIF capture the structure of the data

Extended Isolation Forest - Score maps

Figure: Anomaly score maps for the sinusoidal data (Hariri, Kind, and
Brunner 2019)

▶ both Rotated IF and EIF capture the structure of the data

Extended Isolation Forest - Score variance

Figure: Anomaly score mean and variance for points located on
concentric circles (Hariri, Kind, and Brunner 2019)

▶ mean varies the same way
▶ variance is small in all 3 cases for points near the data mean
▶ after 3 σ the variance is high for standard IF while for Rotated

IF and EIF it stays low
▶ EIF and Rotated IF are more robust!

Extended Isolation Forest - Score variance

Figure: Anomaly score mean and variance for points located on
concentric circles (Hariri, Kind, and Brunner 2019)

▶ mean varies the same way

▶ variance is small in all 3 cases for points near the data mean
▶ after 3 σ the variance is high for standard IF while for Rotated

IF and EIF it stays low
▶ EIF and Rotated IF are more robust!

Extended Isolation Forest - Score variance

Figure: Anomaly score mean and variance for points located on
concentric circles (Hariri, Kind, and Brunner 2019)

▶ mean varies the same way
▶ variance is small in all 3 cases for points near the data mean

▶ after 3 σ the variance is high for standard IF while for Rotated
IF and EIF it stays low

▶ EIF and Rotated IF are more robust!

Extended Isolation Forest - Score variance

Figure: Anomaly score mean and variance for points located on
concentric circles (Hariri, Kind, and Brunner 2019)

▶ mean varies the same way
▶ variance is small in all 3 cases for points near the data mean
▶ after 3 σ the variance is high for standard IF while for Rotated

IF and EIF it stays low

▶ EIF and Rotated IF are more robust!

Extended Isolation Forest - Score variance

Figure: Anomaly score mean and variance for points located on
concentric circles (Hariri, Kind, and Brunner 2019)

▶ mean varies the same way
▶ variance is small in all 3 cases for points near the data mean
▶ after 3 σ the variance is high for standard IF while for Rotated

IF and EIF it stays low
▶ EIF and Rotated IF are more robust!

EIF limitations

Figure: EIF drawback - generation of empty branches (Lesouple et al.
2021)

EIF limitations

▶ as dimensionality increases, the probability of selecting an
intercept p⃗ that results in an empty branch increases

▶ an empty branch wastes time in the process of creation of the
trees (it does not separate the dataset in 2 groups)

How can we sample p⃗ in a way that ensures that empty
branches can’t be created?

EIF limitations

▶ as dimensionality increases, the probability of selecting an
intercept p⃗ that results in an empty branch increases

▶ an empty branch wastes time in the process of creation of the
trees (it does not separate the dataset in 2 groups)

How can we sample p⃗ in a way that ensures that empty
branches can’t be created?

EIF limitations

▶ as dimensionality increases, the probability of selecting an
intercept p⃗ that results in an empty branch increases

▶ an empty branch wastes time in the process of creation of the
trees (it does not separate the dataset in 2 groups)

How can we sample p⃗ in a way that ensures that empty
branches can’t be created?

Generalized Isolation Forest

Figure: GIF - intercept sampling (Lesouple et al. 2021)

Generalized Isolation Forest

▶ normal vector n⃗ is sampled as in EIF

▶ we project all data that corresponds to a node to the normal
unit vector n⃗′

X ′ = Xn′

▶ sample scalar p from minimum and maximum of the
projections (uniform distribution)

pmin = min(X ′)

pmax = max(X ′)

p ∼ U([pmin; pmax])

Generalized Isolation Forest

▶ normal vector n⃗ is sampled as in EIF
▶ we project all data that corresponds to a node to the normal

unit vector n⃗′

X ′ = Xn′

▶ sample scalar p from minimum and maximum of the
projections (uniform distribution)

pmin = min(X ′)

pmax = max(X ′)

p ∼ U([pmin; pmax])

Generalized Isolation Forest

▶ normal vector n⃗ is sampled as in EIF
▶ we project all data that corresponds to a node to the normal

unit vector n⃗′

X ′ = Xn′

▶ sample scalar p from minimum and maximum of the
projections (uniform distribution)

pmin = min(X ′)

pmax = max(X ′)

p ∼ U([pmin; pmax])

Generalized Isolation Forest

▶ change branching condition from:

(x⃗ − p⃗) ∗ n⃗ ≤ 0

▶ to:
x⃗ ∗ n⃗ ≤ p

▶ GIF obtains very similar performance with EIF (accuracy, AUC
and other metrics)

▶ GIF obtains smaller time than EIF in the tree building process

Generalized Isolation Forest

▶ change branching condition from:

(x⃗ − p⃗) ∗ n⃗ ≤ 0

▶ to:
x⃗ ∗ n⃗ ≤ p

▶ GIF obtains very similar performance with EIF (accuracy, AUC
and other metrics)

▶ GIF obtains smaller time than EIF in the tree building process

Generalized Isolation Forest

▶ change branching condition from:

(x⃗ − p⃗) ∗ n⃗ ≤ 0

▶ to:
x⃗ ∗ n⃗ ≤ p

▶ GIF obtains very similar performance with EIF (accuracy, AUC
and other metrics)

▶ GIF obtains smaller time than EIF in the tree building process

Generalized Isolation Forest

▶ change branching condition from:

(x⃗ − p⃗) ∗ n⃗ ≤ 0

▶ to:
x⃗ ∗ n⃗ ≤ p

▶ GIF obtains very similar performance with EIF (accuracy, AUC
and other metrics)

▶ GIF obtains smaller time than EIF in the tree building process

Deep Isolation Forest

Figure: Hard anomalies in original space and projections obtained with
NN (Lesouple et al. 2021)

▶ anomalies can’t be isolated with axis-parallel hyperplanes in
original space

▶ it’s possible that they can be isolated using axis-parallel
hyperplanes in spaces resulted from a forward pass through
randomly initialized NN

▶ axis parallel cuts in new spaces correspond to nonlinear cuts in
the original space

Deep Isolation Forest

Figure: Hard anomalies in original space and projections obtained with
NN (Lesouple et al. 2021)

▶ anomalies can’t be isolated with axis-parallel hyperplanes in
original space

▶ it’s possible that they can be isolated using axis-parallel
hyperplanes in spaces resulted from a forward pass through
randomly initialized NN

▶ axis parallel cuts in new spaces correspond to nonlinear cuts in
the original space

Deep Isolation Forest

Figure: Hard anomalies in original space and projections obtained with
NN (Lesouple et al. 2021)

▶ anomalies can’t be isolated with axis-parallel hyperplanes in
original space

▶ it’s possible that they can be isolated using axis-parallel
hyperplanes in spaces resulted from a forward pass through
randomly initialized NN

▶ axis parallel cuts in new spaces correspond to nonlinear cuts in
the original space

Deep Isolation Forest

▶ each iTree will have a corresponding neural network with
randomly initialized weights

▶ the random representations ensemble is defined as:

G(D) = {Xu ⊂ Rd |Xu = Φu(D; θu)}r
u=1

r - ensemble size
Φu : D → Rd - network that maps original data in
d-dimensional spaces
θu - randomly initialized network weights

▶ DIF does not involve NN optimization

Deep Isolation Forest

▶ each iTree will have a corresponding neural network with
randomly initialized weights

▶ the random representations ensemble is defined as:

G(D) = {Xu ⊂ Rd |Xu = Φu(D; θu)}r
u=1

r - ensemble size
Φu : D → Rd - network that maps original data in
d-dimensional spaces
θu - randomly initialized network weights

▶ DIF does not involve NN optimization

Deep Isolation Forest

▶ each iTree will have a corresponding neural network with
randomly initialized weights

▶ the random representations ensemble is defined as:

G(D) = {Xu ⊂ Rd |Xu = Φu(D; θu)}r
u=1

r - ensemble size
Φu : D → Rd - network that maps original data in
d-dimensional spaces
θu - randomly initialized network weights

▶ DIF does not involve NN optimization

	
	

