Anomaly Detection Isolation Forest

Andrei Hîji

Computer Science Department Faculty of Mathematics and Computer Science University of Bucharest Email: andrei-iulian.hiji@unibuc.ro

▶ Isolation Forest

- ▶ Extended Isolation Forest
- ▶ Generalized Isolation Forest
- ▶ Deep Isolation Forest

The course references are the initial paper for IForest by Liu, Ting, and Zhou [2008](#page-0-0) and its variations: Extended Isolation Forest Hariri, Kind, and Brunner [2019,](#page-0-0) Generalized Isolation Forest Lesouple et al. [2021,](#page-0-0) Deep Isolation Forest Xu et al. [2023](#page-0-0)

- ▶ Most methods try to profile normal instances and then identify those instances that don't comply with the resulted profile
	- ▶ not optimized for anomaly detection
	- \triangleright existing methods have high computational complexity (constraints on data size and dimensionality)

- ▶ Most methods try to profile normal instances and then identify those instances that don't comply with the resulted profile
	- ▶ not optimized for anomaly detection
	- ▶ existing methods have high computational complexity (constraints on data size and dimensionality)
- \blacktriangleright Explicit isolation exploits 2 properties of anomalies
	- \blacktriangleright fewer instances (minority)
	- ▶ very different attributes (compared to normal instances)

A binary tree - used to isolate every instance by recursively partitioning the data space with random binary splits

- \triangleright root node will contain initial data
- \triangleright each binary split will create 2 child nodes
- \triangleright stop when each instance is isolated

Assumption: anomalies will be isolated faster (closer to the root of the tree because they are 'few and different')

Definition

Let T be a node of an isolation tree. T can be an external-node with no child, or an internal-node with one test and exactly two child nodes $(\mathcal{T}_l, \mathcal{T}_r)$. A test consists of an attribute q and a split value p such that the test $q < p$ divides data points into T_l and T_r

Definition

Let T be a node of an isolation tree. T can be an external-node with no child, or an internal-node with one test and exactly two child nodes $(\mathcal{T}_l, \mathcal{T}_r)$. A test consists of an attribute q and a split value p such that the test $q < p$ divides data points into T_l and T_r

iTree properties:

- ▶ proper binary tree (each node has 0 or 2 child nodes)
- \triangleright a fully grown iTree has *n* external nodes (where *n*-number of instances)
- \triangleright a fully grown iTree has $n-1$ internal nodes

1. Randomly select an attribute q

- 1. Randomly select an attribute q
- 2. Randomly choose a split value p

- 1. Randomly select an attribute q
- 2. Randomly choose a split value p
- 3. Using the test $q < p$ divide X in X_i and X_r

- 1. Randomly select an attribute q
- 2. Randomly choose a split value p
- 3. Using the test $q < p$ divide X in X_i and X_r
- 4. Recursively partition X_l and X_r using steps 1, 2, 3 until:
	- \blacktriangleright the iTree reaches a height limit

$$
\blacktriangleright |\mathsf{X}| = 1
$$

 \blacktriangleright all instances in X have the same values

Normal point vs anomaly isolation

Figure: Isolation process (Liu, Ting, and Zhou [2008\)](#page-0-0)

▶ 12 random partitions needed to isolate x_i ; only 4 needed for x_o

Definition

Path Length $h(x)$ of a point x represents the number of edges x traverses in an iTree from the root node until the traversal is terminated at an external node.

Why **Path length** can't be used as an anomaly score?

Definition

Path Length $h(x)$ of a point x represents the number of edges x traverses in an iTree from the root node until the traversal is terminated at an external node.

Why **Path length** can't be used as an anomaly score?

We need a bounded interval, independent of number of instances n

Anomaly score derivation

Properties of **path length**:

 \blacktriangleright maximum path length grows in the order of n

- \blacktriangleright maximum path length grows in the order of n
- ▶ average path length grows in the order of $log(n)$

- \blacktriangleright maximum path length grows in the order of n
- ▶ average path length grows in the order of $log(n)$

Equivalence of iTrees with Binary Search Trees:

▶ both are proper binary trees

- \blacktriangleright maximum path length grows in the order of n
- ▶ average path length grows in the order of $log(n)$

Equivalence of iTrees with Binary Search Trees:

- ▶ both are proper binary trees
- ▶ a path search ending in an external node is equivalent with an unsuccessful search in a BST

- \blacktriangleright maximum path length grows in the order of n
- ▶ average path length grows in the order of $log(n)$

Equivalence of iTrees with Binary Search Trees:

- ▶ both are proper binary trees
- ▶ a path search ending in an external node is equivalent with an unsuccessful search in a BST
- \triangleright average path length of an iTree $=$ average path length of unsuccessful search in BST

- \blacktriangleright maximum path length grows in the order of n
- ▶ average path length grows in the order of $log(n)$

Equivalence of iTrees with Binary Search Trees:

- ▶ both are proper binary trees
- ▶ a path search ending in an external node is equivalent with an unsuccessful search in a BST
- \triangleright average path length of an iTree $=$ average path length of unsuccessful search in BST

$$
c(n) = 2H(n-1) - 2\left(\frac{n-1}{n}\right)
$$

- \blacktriangleright n number of instances
- ▶ $H(i)$ (harmonic number) = $ln(i) + 0.5772156649$ (Euler's constant)

▶ IF simply builds an ensemble of independent iTrees

- \blacktriangleright IF simply builds an ensemble of independent iTrees
- ▶ each iTree is built from a different sub-sample of the original data (sampling is conducted without replacement)

- \blacktriangleright IF simply builds an ensemble of independent iTrees
- ▶ each iTree is built from a different sub-sample of the original data (sampling is conducted without replacement)
- \triangleright each iTree will be able to identify different types of anomalies (due to sub-sampling and random partitioning)

- \blacktriangleright IF simply builds an ensemble of independent iTrees
- ▶ each iTree is built from a different sub-sample of the original data (sampling is conducted without replacement)
- \triangleright each iTree will be able to identify different types of anomalies (due to sub-sampling and random partitioning)
- ▶ IF only needs 2 parameters:

 \blacktriangleright number of trees to build - t

- \blacktriangleright IF simply builds an ensemble of independent iTrees
- ▶ each iTree is built from a different sub-sample of the original data (sampling is conducted without replacement)
- \triangleright each iTree will be able to identify different types of anomalies (due to sub-sampling and random partitioning)
- ▶ IF only needs 2 parameters:
	- \blacktriangleright number of trees to build t
	- ▶ sub-sampling size *ψ*

 \blacktriangleright x - an instance

 \blacktriangleright x - an instance

- \triangleright c(n) average of $h(x)$ given the number of instances n
- ▶ we use $c(n)$ to normalize $h(x)$

 \blacktriangleright x - an instance

- \triangleright c(n) average of $h(x)$ given the number of instances n
- \triangleright we use $c(n)$ to normalize $h(x)$
- ▶ final anomaly score becomes:

$$
s(x,n)=2^{-\frac{E(h(x))}{c(n)}}
$$

 \blacktriangleright $E(h(x))$ - average of $h(x)$ from all the iTrees of the IForest ▶ 0 $<$ s $<$ 1

$$
\blacktriangleright \ \mathit{E(h(x))} \to \mathit{c(n)} \implies s \to 0.5
$$

\n- $$
E(h(x)) \rightarrow c(n) \implies s \rightarrow 0.5
$$
\n- $E(h(x)) \rightarrow 0 \implies s \rightarrow 1$ (anomaly)
\n

\n- $$
E(h(x)) \rightarrow c(n) \implies s \rightarrow 0.5
$$
\n- $E(h(x)) \rightarrow 0 \implies s \rightarrow 1$ (anomaly)
\n- $E(h(x)) \rightarrow n-1 \implies s \rightarrow 0$ (normal instances)
\n

Figure: Anomaly score contour for a Gaussian distribution (Liu, Ting, and Zhou [2008\)](#page-0-0)

Figure: Anomaly score contour for a Gaussian distribution (Liu, Ting, and Zhou [2008\)](#page-0-0)

▶ contour lines for different scores

anomalies can be identified using a threshold value for score s

Masking and Swamping

▶ Masking - the number of anomalies is too large, not allowing the model to detect them

Masking and Swamping

- ▶ Masking the number of anomalies is too large, not allowing the model to detect them
- ▶ Swamping normal instances are wrongly identified as anomalies because they are too close to anomalies

Masking and Swamping

- ▶ Masking the number of anomalies is too large, not allowing the model to detect them
- ▶ Swamping normal instances are wrongly identified as anomalies because they are too close to anomalies

Figure: Effects of masking and swamping (Liu, Ting, and Zhou [2008\)](#page-0-0)

▶ can only build partial iTrees since we are not interested to isolate every normal point

- ▶ can only build partial iTrees since we are not interested to isolate every normal point
- ▶ no distance or density measure is needed, resulting in a small computational cost

- ▶ can only build partial iTrees since we are not interested to isolate every normal point
- ▶ no distance or density measure is needed, resulting in a small computational cost
- ▶ linear time complexity and low memory requirement
- \triangleright can handle datasets with large size and dimensionality

IForest training

iTrees are built with recursive partitioning until all instances are isolated or the height limit is reached $(I = ceiling(log_2 \psi))$

Algorithm 1 : *iForest*(*X, t,* ψ)

Inputs: X - input data, t - number of trees, ψ - subsampling size

Output: a set of t *iTrees*

- 1 Initialize Forest
- 2: set height limit $l = ceiling(\log_2 \psi)$
- 3: for $i=1$ to t do
- 4: $X' \leftarrow sample(X, \psi)$
- 5: $Forest \leftarrow Forest \cup iTree(X', 0, l)$
- $6:$ end for
- 7: return $Forest$

Figure: Training algorithm (Liu, Ting, and Zhou [2008\)](#page-0-0)

Algorithm 2: $iTree(X, e, l)$

Inputs: X - input data, e - current tree height, l - height limit

Output: an iTree

1: if $e \geq l$ or $|X| \leq 1$ then

return exNode{ $Size \leftarrow |X|$ } $2:$

3: else

- let Q be a list of attributes in X $4:$
- randomly select an attribute $q \in Q$ $5:$
- randomly select a split point p from max and min $6:$ values of attribute q in X

7:
$$
X_l \leftarrow filter(X, q < p)
$$
\n8: $X_r \leftarrow filter(X, q \geq p)$ \n9: return $inNode\{Left \leftarrow iTree(X_l, e + 1, l), \right\}$ \n10: $Right \leftarrow iTree(X_r, e + 1, l),$ \n11: $SplitAtt \leftarrow q$ \n12: $SplitValue \leftarrow p$ \n13: end if

Figure: Training algorithm for each iTree (Liu, Ting, and Zhou [2008\)](#page-0-0)

- **►** sub-sampling size $\psi = 256$ (height limit $l = 8$)
- \blacktriangleright the ensemble size $t = 100$
- \blacktriangleright training complexity: $O(t\psi \log \psi)$

IForest inference details

Algorithm 3 : $PathLength(x, T, e)$

Inputs : x - an instance, T - an iTree, e - current path length; to be initialized to zero when first called **Output:** path length of x

- 1: if T is an external node then
- return $e + c(T.size)$ $2:$
- $3:$ end if
- 4: $a \leftarrow T.splitAtt$
- 5: if $x_a < T.splitValue$ then
- return $PathLength(x, T.left, e + 1)$ $6:$
- 7: **else** $\{x_a \geq T.splitValue\}$
- return $PathLength(x, T.right, e + 1)$ $8:$
- $9:$ end if

Figure: PathLength algorithm (Liu, Ting, and Zhou [2008\)](#page-0-0)

IForest inference details

Algorithm 3 : $PathLength(x, T, e)$

Inputs : x - an instance, T - an iTree, e - current path length; to be initialized to zero when first called **Output:** path length of x

- 1: if T is an external node then
- return $e + c(T.size)$ $2:$
- $3:$ end if
- 4: $a \leftarrow T.splitAtt$
- 5: if $x_a < T.splitValue$ then
- return $PathLength(x, T.left, e + 1)$ $6:$
- 7: **else** $\{x_a \geq T.splitValue\}$
- return $PathLength(x, T.right, e + 1)$ $8:$
- $9:$ end if

Figure: PathLength algorithm (Liu, Ting, and Zhou [2008\)](#page-0-0)

• inference complexity: $O(nt \log \psi)$

Figure: Data and anomaly score map for IF (Hariri, Kind, and Brunner [2019\)](#page-0-0)

- ▶ 2-dimensional normal distributed points
- \blacktriangleright darker areas \rightarrow higher anomaly scores

Figure: Data and anomaly score maps for IF (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Figure: Branch cuts generated by IF (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Figure: Branch cuts generated by IF (Hariri, Kind, and Brunner [2019\)](#page-0-0)

- \triangleright brach cuts tend to cluster where most of the data points reside
- \triangleright the fact that separating hyperplanes can only be horizontal or vertical causes the presence of many separating hyperplanes in regions with low density

- \blacktriangleright every individual tree is built using standard IF
- ▶ before that, the sub-sample used for each tree is rotated by a random angle

- \triangleright every individual tree is built using standard IF
- ▶ before that, the sub-sample used for each tree is rotated by a random angle
- ▶ in testing phase, before computing **PathLength**, we have to rotate the test data by the angle corresponding to each tree

- \triangleright every individual tree is built using standard IF
- ▶ before that, the sub-sample used for each tree is rotated by a random angle
- ▶ in testing phase, before computing **PathLength**, we have to rotate the test data by the angle corresponding to each tree
- \triangleright the bias (corresponding to standard IF) still exists, but now it's different for each tree

Extended Isolation Forest

Figure: EIF partitions for anomaly and normal point (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Instead of a random attribute and a random value for it we now need:

- \triangleright a random slope for the separating hyperplane (normal vector \vec{n} to the hyperplane)
- \triangleright a random intercept \vec{p} for the hyperplane

Instead of a random attribute and a random value for it we now need:

- \triangleright a random slope for the separating hyperplane (normal vector \vec{n} to the hyperplane)
- \triangleright a random intercept \vec{p} for the hyperplane

Partitioning criteria now becomes:

$$
(\vec{x}-\vec{p})\ast\vec{n}\leq 0
$$

If the condition holds \vec{x} goes to the left branch, else to the right

Extended Isolation Forest

Figure: Branch cuts generated by EIF (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Regions with higher density contain most of the branch cuts while **regions with low density don't end up with many separating hyperplanes (as in standard IF case)**

Figure: Anomaly score maps for the single blob, normally distributed (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Figure: Anomaly score maps for the single blob, normally distributed (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Figure: Anomaly score maps for the single blob, normally distributed (Hariri, Kind, and Brunner [2019\)](#page-0-0)

- ▶ low-score bands (present in IF) disappear in EIF
- ▶ in EIF score increases monotonically in every direction as we move away from data mean

Figure: Anomaly score maps for the two blobs, normally distributed (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Figure: Anomaly score maps for the two blobs, normally distributed (Hariri, Kind, and Brunner [2019\)](#page-0-0)

▶ "ghost" regions from the IF score map disappear

Figure: Anomaly score maps for the sinusoidal data (Hariri, Kind, and Brunner [2019\)](#page-0-0)

Figure: Anomaly score maps for the sinusoidal data (Hariri, Kind, and Brunner [2019\)](#page-0-0)

▶ both Rotated IF and EIF capture the structure of the data

(a) Data

(b) Score Mean

(c) Score Variance

(a) Data

(b) Score Mean

(c) Score Variance

```
\blacktriangleright mean varies the same way
```


(b) Score Mean

(c) Score Variance

- \blacktriangleright mean varies the same way
- variance is small in all 3 cases for points near the data mean

- \blacktriangleright mean varies the same way
- variance is small in all 3 cases for points near the data mean
- after 3 σ the variance is high for standard IF while for Rotated IF and EIF it stays low

Figure: Anomaly score mean and variance for points located on concentric circles (Hariri, Kind, and Brunner [2019\)](#page-0-0)

\blacktriangleright mean varies the same way

- variance is small in all 3 cases for points near the data mean
- after 3 σ the variance is high for standard IF while for Rotated IF and EIF it stays low
- ▶ **EIF and Rotated IF are more robust!**

EIF limitations

Figure: EIF drawback - generation of empty branches (Lesouple et al. [2021\)](#page-0-0)

▶ as dimensionality increases, the probability of selecting an intercept \vec{p} that results in an empty branch increases

- \triangleright as dimensionality increases, the probability of selecting an intercept \vec{p} that results in an empty branch increases
- ▶ an empty branch wastes time in the process of creation of the trees (it does not separate the dataset in 2 groups)

- \triangleright as dimensionality increases, the probability of selecting an intercept \vec{p} that results in an empty branch increases
- ▶ an empty branch wastes time in the process of creation of the trees (it does not separate the dataset in 2 groups)

How can we sample \vec{p} in a way that ensures that empty **branches can't be created?**

Generalized Isolation Forest

Figure: GIF - intercept sampling (Lesouple et al. [2021\)](#page-0-0)

 \triangleright normal vector \vec{n} is sampled as in EIF

 \triangleright normal vector \vec{n} is sampled as in EIF

▶ we project all data that corresponds to a node to the normal unit vector $\vec{n'}$

$$
X^{'}=Xn^{'}
$$

 \triangleright normal vector \vec{n} is sampled as in EIF

▶ we project all data that corresponds to a node to the normal unit vector $\vec{n'}$

$$
X^{'}=Xn^{'}
$$

 \triangleright sample scalar p from minimum and maximum of the projections (uniform distribution)

$$
p_{min} = min(X^{'})
$$

$$
p_{max} = max(X^{'})
$$

$$
p \sim U([p_{min}; p_{max}])
$$

▶ change branching condition from:

 $(\vec{x} - \vec{p}) \cdot \vec{n} \leq 0$

▶ change branching condition from:

$$
(\vec{x}-\vec{p})\ast\vec{n}\leq 0
$$

▶ to:

$$
\vec{x} * \vec{n} \leq p
$$

▶ change branching condition from:

$$
(\vec{x}-\vec{p})\ast\vec{n}\leq 0
$$

 \triangleright to:

$$
\vec{x} * \vec{n} \leq p
$$

▶ GIF obtains very similar performance with EIF (accuracy, AUC and other metrics)

 \blacktriangleright change branching condition from:

$$
(\vec{x}-\vec{p})\ast\vec{n}\leq 0
$$

 \blacktriangleright to:

$$
\vec{x} * \vec{n} \leq p
$$

- ▶ GIF obtains very similar performance with EIF (accuracy, AUC and other metrics)
- ▶ GIF obtains smaller time than EIF in the tree building process

Deep Isolation Forest

Figure: Hard anomalies in original space and projections obtained with NN (Lesouple et al. [2021\)](#page-0-0)

▶ anomalies can't be isolated with axis-parallel hyperplanes in original space

Deep Isolation Forest

Figure: Hard anomalies in original space and projections obtained with NN (Lesouple et al. [2021\)](#page-0-0)

- ▶ anomalies can't be isolated with axis-parallel hyperplanes in original space
- \triangleright it's possible that they can be isolated using axis-parallel hyperplanes in spaces resulted from a forward pass through randomly initialized NN

Deep Isolation Forest

Figure: Hard anomalies in original space and projections obtained with NN (Lesouple et al. [2021\)](#page-0-0)

- ▶ anomalies can't be isolated with axis-parallel hyperplanes in original space
- \triangleright it's possible that they can be isolated using axis-parallel hyperplanes in spaces resulted from a forward pass through randomly initialized NN
- ▶ axis parallel cuts in new spaces correspond to nonlinear cuts in the original space

▶ each iTree will have a corresponding neural network with randomly initialized weights

- ▶ each iTree will have a corresponding neural network with randomly initialized weights
- \blacktriangleright the random representations ensemble is defined as:

$$
\mathcal{G}(\mathcal{D}) = \{ \mathcal{X}_u \subset \mathcal{R}^d | \mathcal{X}_u = \Phi_u(\mathcal{D}; \theta_u) \}_{u=1}^r
$$

 r - ensemble size $\Phi_{\bm{\mathsf{u}}}:\mathcal{D}\rightarrow\mathcal{R}^{\bm{\mathsf{d}}}$ - network that maps original data in d-dimensional spaces θ_{μ} - randomly initialized network weights

- ▶ each iTree will have a corresponding neural network with randomly initialized weights
- \blacktriangleright the random representations ensemble is defined as:

$$
\mathcal{G}(\mathcal{D}) = \{ \mathcal{X}_u \subset \mathcal{R}^d | \mathcal{X}_u = \Phi_u(\mathcal{D}; \theta_u) \}_{u=1}^r
$$

 r - ensemble size $\Phi_{\bm{\mathsf{u}}}:\mathcal{D}\rightarrow\mathcal{R}^{\bm{\mathsf{d}}}$ - network that maps original data in d-dimensional spaces θ_{μ} - randomly initialized network weights

▶ **DIF does not involve NN optimization**

