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Scalar location and scale estimation

We assume that some one-dimensional measurements data is provided:

y1, y2, · · · , ym ∈ R.

Small example:

3.6548 2.8729 1.5856 2.4937 1.2595 2.0692
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Scalar location and scale estimation

We assume that some one-dimensional measurements data is provided:

y1, y2, · · · , ym ∈ R.

Therefore, we desire to explain data through a single variable model:

yi = θ + ϵi ∀1 ≤ i ≤ m,

where

θ is the unknown 1D parameter

ϵi normally distributed noise over N (0, σ)

How to compute a good (location) estimator of E[y ]?

How to compute a good (scale) estimator of σ(y)?

Anomaly Detection 4 / 35



Scalar location and scale estimation

We assume that some one-dimensional measurements data is provided:

y1, y2, · · · , ym ∈ R.

Therefore, we desire to explain data through a single variable model:

yi = θ + ϵi ∀1 ≤ i ≤ m,

where

θ is the unknown 1D parameter

ϵi normally distributed noise over N (0, σ)

How to compute a good (location) estimator of E[y ]?

How to compute a good (scale) estimator of σ(y)?

Anomaly Detection 4 / 35



Scalar location and scale estimation

We assume that some one-dimensional measurements data is provided:

y1, y2, · · · , ym ∈ R.

Therefore, we desire to explain data through a single variable model:

yi = θ + ϵi ∀1 ≤ i ≤ m,

where

θ is the unknown 1D parameter

ϵi normally distributed noise over N (0, σ)

How to compute a good (location) estimator of E[y ]?

How to compute a good (scale) estimator of σ(y)?

Anomaly Detection 4 / 35



Scalar location and scale estimation

We assume that some one-dimensional measurements data is provided:

y1, y2, · · · , ym ∈ R.

Therefore, we desire to explain data through a single variable model:

yi = θ + ϵi ∀1 ≤ i ≤ m,

where

θ is the unknown 1D parameter

ϵi normally distributed noise over N (0, σ)

How to compute a good (location) estimator of E[y ]?

How to compute a good (scale) estimator of σ(y)?

Anomaly Detection 4 / 35



Location and scale estimation

y1, y2, y3 · · · ym−1 ym
3.6548 2.8729 1.5856 2.4937 1.2595 2.0692

Mean (Least-Squares) estimator:

argmin
θ

m∑
i=1

(yi − θ)2.

Solution:

θmean =
1
m

m∑
i=1

yi (= 2.5)
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Location and scale estimation

y1, y2, y3 · · · ym−1 ym
3.6548 2.8729 1.5856 2.4937 1.2595 2.0692

Scale (variance) estimator:

σ̂ =

√√√√1/m
m∑

i=1

(yi − θ)2 (= 0.7689) .
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Outlier

Now assume that we have a measurement error:

y1, y2, y3 · · · ym−1 ym
3.6548 2.8729 1.5856 2.4937 125.95 2.0692

θmean =
1
m

m∑
i=1

yi (= 23.104)

σ̂ =

√√√√1/m
m∑

i=1

(yi − θ)2 (= 2539) .
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Location estimation

Now assume that we have a measurement error:

y1, y2, y3 · · · ym−1 ym
3.6548 2.8729 1.5856 2.4937 125.95 2.0692

θmean =
1
m

m∑
i=1

yi (= 23.104)

σ̂ =

√√√√1/m
m∑

i=1

(yi − θmean)2 (= 2539) .

The error manifests strongly in the mean/scale estimator even for a
single outlier!

We say that the mean estimator has a breakdown value of 1
m (or 0%)
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Location estimation

Definition
The breakdown value bdv of a given estimator is given by the smallest
proportion of the dataset that need to be replaced in order to carry the
estimation arbitrary far away.

The worst: 0% (the case of the mean estimator)

The best: 50% (the case of the robust trimmed estimators)
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A larger example

70 % Normals : N(0, 1) [30% Outliers : N(7, 1)] Mean(y) = 2.1161e + 00
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Trimmed estimation of the mean

Remark (The idea of trimming estimators)
Trim the both tail sides of the data and evaluate a classical non-robust
estimator on the remained data sector.
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Trimmed estimation of the mean

Remark (The idea of trimming estimators)
Trim the both tail sides of the data and evaluate a classical non-robust
estimator on the remained data sector.

Median

Least Trimmed Squares

Least Median Squares

α− trimmed

Their generalization to multidimensional context
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Trimmed estimation of the scale

Remark (The idea of trimming estimators)
Trim the both tail sides of the data and evaluate a classical non-robust
estimator on the remained data sector.

Most used in one dimension:

σ = MAD(y) = medi (|yi − med(y)|)

MAD = Median of the Absolute Deviations from the median.
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Median

y[1] ≤ y[2] ≤ y[3] · · · ≤ y[m] ≤ y[m]

1.5856 2.0692 2.4937 2.8729 3.6548 125.95

Median estimator:

argmin
θ

m∑
i=1

|yi − θ|.

The median = trim 50% each side of the sorted data

It is robust to up to half of data outliers (the median breakdown value of
50%)

Slightly more costly to compute (than the mean) in the scalar case.
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θmed =

{
y[m+1/2] if n odd
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Median

70 % Normals : N(0, 1) [30% Outliers : N(7, 1)]
Mean(y) = 2.1161e + 00, Med(y) = 4.6965e − 01

Anomaly Detection 13 / 35



Median

We saw that the median cuts half of data left and right

This trimming proportion of 50% is fixed ”by the user” and equal on both
sides

α-trimming: trimming proportion α, equal on both sides

May be ”too robust”: α is given a priori (in no connection with the data)

What if the trimming is driven by the data?
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Least Median Squares estimator

Least Median Squares (LMS) estimator:

θLMS := argmin
θ

medi (yi − θ)2.

Determines the center of the region where the ”normal” samples stay
close together.

Unlike the median, lets the data to decide the estimated mean

To compute LMS, one has to compute the ”shortest” half of data: take
h = ⌊m/2⌋+ 1

min{y[h] − y[1], y[h+1] − y[2], · · · , y[n] − y[n−h+1]}

Then, θLMS is the midpoint of this shortest interval.
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LMS

70 % Normals : N(0, 1) [30% Outliers : N(7, 1)]

Mean(y) = 2.1161e + 00, Med(y) = 4.6965e − 01, LMS(y) = 3.4312e − 01
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Least Trimmed Squares estimator

Least Trimmed Squares (LTS) estimator:

θLTS := argmin
θ

h∑
i=1

r2
[i](θ),

where ri(θ) := (yi − θ)2 are the residuals.

A mean estimator over the h ∈ [n/2,n] ”normal” samples.

A small h means a high breakdown vs. a large h better approximates the
true mean.

Basically, assumes that an outlier is ”far off” the mean of the normal
samples.

As in the previous case, mainly lets the data to decide the estimated
mean.
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LTS

Mean(y) = 2.1161e + 00, Med(y) = 4.6965e − 01, LMS(y) = 3.4312e − 01,

LTS(y) = 4.1184e − 03
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Least Trimmed Squares estimator

Least Trimmed Squares (LTS) estimator:

θLTS := argmin
θ

h∑
i=1

r2
[i](θ),

where ri(θ) := (yi − θ)2 are the residuals.

To compute LTS, look at subsamples:

{y[1], · · · , y[h]}, {y[2], · · · , y[h+1]}, · · · , {y[n−h+1], · · · , y[n]}

Compute means: ŷ (i) = 1
h

i+h−1∑
j=i

y[j]

Compute sum of squares: s(i) =
i+h−1∑

j=i
(y[j] − ŷ (j))2

Solution: ŷ (i) associated with the smallest s(i).
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Multidimensional regression

Anomaly Detection 21 / 35



Multidimensional regression

The LR problem:

min
θ

m∑
i=1

(yi − aT
i θ)

2.

Traditional non-robust regression method with explicit solution.

It breaks even for a single outlier.

How to extends the previous models to this problem?
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Multidimensional regression
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LTS from multidimensional data

Least Trimmed Squares (LTS) estimator:

θLTS := argmin
θ

h∑
i=1

r2
[i](θ),

where ri(θ) := (yi − aT
i θ)

2.

The algorithm from the scalar case does not help!

The problem is nonconvex (combinatorial) and there is no hope to find a
global optimum.

What about local minima?
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LTS from multidimensional data

Least Trimmed Squares (LTS) estimator:

θLTS := argmin
θ

h∑
i=1

r2
[i](θ),

where ri(θ) := (yi − aT
i θ)

2.

θLTS = argmin
θ

min
ω≥0,

∑
i ωi=h

n∑
i=1

ωi(yi − aT
i θ)

2

= arg min
θ,ω∈∆h

n∑
i=1

ωi(yi − aT
i θ)

2

Good news: nonconvex in joint variable (θ, ω), but convex over variable θ and
ω, separately.
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LTS from multidimensional data

Least Trimmed Squares (LTS) estimator:

θLTS := argmin
θ

h∑
i=1

r2
[i](θ),

where ri(θ) := (yi − aT
i θ)

2.
In other words:

θ(ω) = argmin
θ

n∑
i=1

ωi(yi − aT
i θ)

2(just a LS solution)

ω(θ) = arg min
ω∈∆h

n∑
i=1

ωi(yi − aT
i θ)

2(bottom h residuals)
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Alternating Minimization algorithm

Initialize θ0 ∈ Rn, ω0 ∈ ∆h and iterate

θk+1 := argmin
θ

n∑
i=1

ωk
i (yi − aT

i θ)
2

ωk+1 = arg min
ω∈∆h

n∑
i=1

ωi(yi − aT
i θ

k+1)2
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Alternating Minimization algorithm

Initialize θ0 ∈ Rn, ω0 ∈ ∆h and iterate

θk+1 := argmin
θ

n∑
i=1

ωk
i (yi − aT

i θ)
2

The iteration θk is an usual LR estimator over the h−subset of data featuring
the h smallest residuals.
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Alternating Minimization algorithm

Initialize θ0 ∈ Rn, ω0 ∈ ∆h and iterate

ωk+1 = arg min
ω∈∆h

n∑
i=1

ωi(yi − aT
i θ

k+1)2

For the new θk+1, the weights ωk+1 are the 1 for the new smallest h residual
and 0 otherwise.
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Alternating Minimization algorithm

Easy to show that any limit point satisfy:

θ∗ = argmin
θ

n∑
i=1

ω∗
i ri(θ)

2

ω∗ = argmin
ω

n∑
i=1

ωi ri(θ
∗)2.

Usually, the rate convergence is relatively high.

In simple cases, this kind of stationary point is sufficiently close to
optimum and provides reasonable estimation.

Really hard to improve this class of local minima.
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Multidimensional clustering
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Multidimensional clustering
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Multidimensional clustering

The clustering problem:

min
θ1,··· ,θk

m∑
i=1

min
1≤j≤k

∥yi − θj∥2.

Assumes k clusters in data and aims at optimally finding the k centers.

Highly nonconvex even in 1D.

K-Means is not robust to outliers: bdp 1/m → 0% (when m → ∞).
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Multidimensional clustering

The clustering problem:

min
θ1,··· ,θk

m∑
i=1

min
1≤j≤k

∥yi − θj∥2.

How we compute the centers? 1) First, introduce slack variables ω

min
θ1,··· ,θk

min
ωi∈∆1

m∑
i=1

k∑
j=1

ωj
i∥yi − θj∥2.

2) Apply alternating minimization scheme over the variables.
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Multidimensional clustering

The clustering problem:

min
θ1,··· ,θk

m∑
i=1

min
1≤j≤k

∥yi − θj∥2.

Alternating Minimization

While stopping criterion = FALSE :

1. θi
k+1 = argmin

m∑
j=1

[ωj
k ]i∥y j − θi∥2, ∀1 ≤ i ≤ K

2. ωj
k+1 = argmin

K∑
i=1

ωj
i∥y j − θi

k+1∥2, s.l.
∑K

i=1 ω
j
i = 1, ωj ≥ 0,∀1 ≤ j ≤ m

3. k := k + 1
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Multidimensional clustering

The clustering problem:

min
θ1,··· ,θk

m∑
i=1

min
1≤j≤k

∥yi − θj∥2.

Alternating Minimization

While stopping criterion = FALSE :

1. θi
k+1 =

m∑
j=1

[ωj
k ]i y

j

m∑
j=1

ωj
i,k

2. [ωj
k+1]i =

{
1 if i = argmini ∥y j − θi∥2

0 else

3. k := k + 1
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Trimmed clustering

Trimmed-k means:

min
θ1,··· ,θk

h∑
i=1

r[i](θ).

where ri(θ) = min
1≤j≤k

∥yi − θj∥2.

We assume k clusters in data and aims at optimally finding the k
centers.

We trim the points with positions far from any cluster

α = h/m
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Trimmed clustering

Trimmed-k means:

min
θ1,··· ,θk

h∑
i=1

r[i](θ) where ri(θ) = min
1≤j≤k

∥yi − θj∥2.

How we compute the centers? 1) Introduce binary slack variables ω, z

min
θ1,··· ,θk

min
ωi∈∆1,z∈∆h

m∑
i=1

zi

k∑
j=1

ωj
i∥yi − θj∥2.

2) Apply alternating minimization scheme over the variables.
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Trimmed clustering

Trimmed-k means:

min
θ1,··· ,θk

h∑
i=1

r[i](θ) where ri(θ) = min
1≤j≤k

∥yi − θj∥2.

Alternating Minimization

While stopping criterion = FALSE :

1. θi
k+1 = argmin

m∑
j=1

[zi ]k [ω
j
k ]i∥y j − θi∥2, ∀1 ≤ i ≤ K

2. ωj
k+1 = argmin

K∑
i=1

[zj ]kω
j
i∥y j − θi

k+1∥2, s.l.
∑K

i=1 ω
j
i = 1, ωj ≥ 0,∀1 ≤ j ≤

m

3. zk+1 = argmin
K∑

i=1
[zj ]k rj(θk+1)

4. k := k + 1
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Trimmed clustering

Trimmed-k means:

min
θ1,··· ,θk

h∑
i=1

r[i](θ) where ri(θ) = min
1≤j≤k

∥yi − θj∥2.

Alternating Minimization

While stopping criterion = FALSE :

1. θi
k+1 =

m∑
j=1

zk
j [ω

j
k ]i y

j

m∑
j=1

ωj
i,k

2. [ωj
k+1]i =

{
1 if i = argmini ∥y j − θi∥2&rank(y j) ≤ h
0 else

3. zk+1 = hard thres(r(θ)) % indices of smallest ri

4. k := k + 1
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Practical aspects

Robust estimators require tuning parameters in general, e.g. h, α. These
parameters encodes our prior knowledge (assumptions) about data.
Outlier robustness vs. generalization quality.

Both traditional and robust models are combined in practice; e.g. if their
results are highly different, then the data might be contaminated.

Due to combinatorial nature of robust models, simple algorithms are
preffered.

Anomaly Detection 34 / 35



Practical aspects

Robust estimators require tuning parameters in general, e.g. h, α. These
parameters encodes our prior knowledge (assumptions) about data.
Outlier robustness vs. generalization quality.

Both traditional and robust models are combined in practice; e.g. if their
results are highly different, then the data might be contaminated.

Due to combinatorial nature of robust models, simple algorithms are
preffered.

Anomaly Detection 34 / 35



Practical aspects

Robust estimators require tuning parameters in general, e.g. h, α. These
parameters encodes our prior knowledge (assumptions) about data.
Outlier robustness vs. generalization quality.

Both traditional and robust models are combined in practice; e.g. if their
results are highly different, then the data might be contaminated.

Due to combinatorial nature of robust models, simple algorithms are
preffered.

Anomaly Detection 34 / 35



References

1 Garcı́a-Escudero, Luis A., and Agustı́n Mayo-Iscar. ”Robust clustering
based on trimming.” Wiley Interdisciplinary Reviews: Computational
Statistics 16.4 (2024): e1658.

2 Rousseeuw, Peter J., and Annick M. Leroy. Robust regression and
outlier detection. John wiley & sons, 2005.

3 Cizek, Pavel, and J. A. Visek. ”Least trimmed squares.” XPLORE,
Application Guide (2000): 49-64.

4 Garcia-Escudero, Luis Angel, and Alfonso Gordaliza. ”Robustness
properties of k means and trimmed k means.” Journal of the American
Statistical Association 94.447 (1999): 956-969.

Anomaly Detection 35 / 35


