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Outline

One class classification: OC-SVM, SVDD. Algorithms.

Robust versions. Algorithms.
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One class classification

Consider the training data is provided:

x1, x2, · · · , xm ⊂ X .

where m is the number of the observations and X some space (i.e. compact
subset of Rn).

Question
What is a ”good” binary function f that captures the ”region” of the most of
datapoints where returns +1, and −1 elsewhere ?
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One class classification

Consider the training data is provided:

x1, x2, · · · , xm ⊂ X .

where m is the number of the observations and X some space (i.e. compact
subset of Rn).

A simple answer: convex bodies such as

hyperplanes

spheres

ellipsoids
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One class classification - hyperplane

Consider the training data is provided:

x1, x2, · · · , xm ⊂ X .

where m is the number of the observations and X some space (e.g. compact
subset of Rn).

Idea: The inliers are grouped in a region far from the origin.
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One class classification - hyperplane

Consider the training data is provided:

x1, x2, · · · , xm ⊂ X .

where m is the number of the observations and X some space (e.g. compact
subset of Rn).
Prior assumptions:

the inliers are distributed in a region separable from the origin by a
hyperplane

the outliers lies near the origin

Take the decision function as f (x) = sgn(wT x − ρ), then find the optimal
paramaters (w , ρ) of the hyperplane such that:

wT xinlier ≥ ρ

wT xoutlier < ρ.
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One class classification - hyperplane

In the separable case, there is an infinite number of hyperplanes of
choice

Let the distance from the origin (of a hyperplane) be named as margin,
then we desire to obtain the hyperplane with the maximal margin.

The distance from x to hyperplane {x : wT x = ρ} is |wT x−ρ|
∥w∥ .

Thus we maximize ρ
∥w∥ .
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One class classification - hyperplane

In order to maximize ρ
∥w∥ , we minimize 1

2∥w∥2 − ρ

In the nonseparable case we allow slack variables ξ to encode the
outlyingness of nonseparable data:

wT xinlier ≥ ρ

ξ = ρ− wT xoutlier ≥ 0.

min
w,ξ∈Rm,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

ξi − ρ

s.t. ⟨w , xi⟩ ≥ ρ− ξi , ξi ≥ 0 ∀i ∈ {1, · · · ,m}.
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One class classification - hyperplane

min
w,ξ∈Rm,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

ξi − ρ

s.t. ⟨w , xi⟩ ≥ ρ− ξi , ξi ≥ 0 ∀i ∈ {1, · · · ,m}.

convex QP with m linear inequalities constraints

regularization: ∥w∥2 (justify the minimum margin hyperplane)

error slack variables: ξ

penalty parameter: 1/ν ∈ [1,∞)
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Dual Problem

The primal problem is convex (linear constraints):

min
w,b,ξ

1
2
∥w∥2 +

1
mν

m∑
i=1

ξi − ρ

s.l. wT xi ≥ ρ− ξi ∀i = 1, · · · ,m
ξ ≥ 0.

The large number of constraints makes the primal hard to handle. Therefore,
we take steps toward the dual: let the Lagrange multipliers λ, γ ≥ 0

L(w , ρ, ξ, λ, γ) =
1
2
∥w∥2 +

1
mν

m∑
i=1

ξi − ρ−
m∑

i=1

λi [wT xi − ρ+ ξi ]−
m∑

i=1

γiξi .
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Dual Problem

Kuhn-Tucker optimality conditions:

∇wL(w , ρ, ξ, λ, γ) = w −
m∑

i=1

λixi = 0

∇ρL(w , ρ, ξ, λ, γ) =
m∑

i=1

λi − 1 = 0

∇ξiL(w , ρ, ξ, λ, γ) =
1

mν
− λi − γi .

γ ≥ 0,0 ≤ λ ≤ 1
mν

.

We observe that at optimality we have:

w∗ =
m∑

i=1

λ∗
i xi .

The datapoints x i such that λ∗
i = 0 do not contributes to the problem solution;

those for which λ∗
i > 0 are support vectors: ⟨w∗, x i⟩ − ρ∗ = 0.
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Dual Problem

The dual problem:

max
λ

− 1
2
λT XX Tλ

s.l. eTλ = 1, 0 ≤ λi ≤
1

mν
.

where X =
[
x1 x2 · · · xm

]
.

A convex quadratic objective with a high-dimensional Hessian (m × m).

Strict inliers λ∗
i = 0, SVs λ∗

i > 0.

Once optimal λ∗ is computed then w∗ =
∑m

i=1 λ
∗
i xi .
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Nonlinear OC-SVM

Back to our data:

x1, x2, · · · , xm ⊂ X .

In the non-separable case, we map the training data in high-dimensional
spaces by choosing a function ϕ : X → F such that the inner product
between the images of ϕ can be evaluated some simple kernel:

k(x , y) := ⟨ϕ(x), ϕ(y)⟩.

Example: Gaussian kernel

k(x , y) := e− ∥x−y∥2

σ
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Nonlinear OC-SVM

ϕ(x1), ϕ(x2), · · · , ϕ(xm) ⊂ F .

Primal nonlinear problem:

min
w,ξ∈Rm,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

ξi − ρ

s.t. ⟨w , ϕ(xi)⟩ ≥ ρ− ξi , ξi ≥ 0 ∀i ∈ {1, · · · ,m}.

Now the dimension of w is the dimension of feature space. The problem is
still convex and has a similar dual as in the linear case.
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Nonlinear OC-SVM

The dual problem:

max
λ

− 1
2
λT Kλ

s.l. eTλ = 1, 0 ≤ λi ≤
1

mν
.

where K =
[
ϕ(x1) ϕ(x2) · · · ϕ(xm)

]T [
ϕ(x1) ϕ(x2) · · · ϕ(xm)

]
.

Hessian Kij = ⟨ϕ(xi), ϕ(xj)⟩ and Kii = 1.

Strict inliers λ∗
i = 0, SVs λ∗

i > 0.

Once optimal λ∗ is computed then w∗ =
∑m

i=1 λ
∗
i ϕ(xi).
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How to solve the Dual problem ?

Possible algorithms:

off-the-shelf QP solvers: cvxpy, quadprog, MOSEK etc. O(m3)

Simplex-type feasible set (m log(m) to project on)

The cost of a first-order iteration: gradient evaluation O(m2) + projection
onto the simple O(m log(m)).

Best suggestion: approach large-scale instances by coordinate descent
algorithms (scitkit-learn uses libsvm for training)
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Basic coordinate descent algorithms

min
λ

1
2
λT Hλ+ bTλ

s.l. eTλ = 1, 0 ≤ λi ≤ C.

Idea of CD
Instead of approximating the whole λ at each iteration, update only a small
block of variables.
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Basic coordinate descent algorithms

min
λ

1
2
λT Hλ+ bTλ

s.l. eTλ = 1, 0 ≤ λi ≤ C.

Idea of CD
Instead of approximating the whole λ at each iteration, update only a small
block of variables.

Example CD
Exact 2-coordinate descent: choose (i , j) ∈ {1, · · · ,m}; let λij = [λi λj ]

T

λ+
ij := argmin

λij

1
2
(λ2

i + λ2
j ) + Kijλiλj + bT

ij λij

s.l. λi + λj = ∆, 0 ≤ λi , λj ≤ C.
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Basic coordinate descent algorithms

min
λ

1
2
λT Hλ+ bTλ

s.l. eTλ = 1, 0 ≤ λi ≤ C.

Exact 2-coordinate descent main loop:

1 choose (i , j) ∈ {1, · · · ,m} (cyclic, random etc.)

2 update:

λ∗
ij := argmin

λij

1
2
(λ2

i + λ2
j ) + Kijλiλj + bT

ij λij

s.l. λi + λj = ∆, 0 ≤ λi , λj ≤ C.

where ∆ = 1 −
∑

t ̸=i,j λt .

3 λ+
ij := λ∗

ij and λ+
ij := λij
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Experiments
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One class classification - hypersphere

Consider the training data is provided:

x1, x2, · · · , xm ⊂ X .

where m is the number of the observations and X some space (i.e. compact
subset of Rn).
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One class classification - picture

Take the decision function as f (x) = sgn(∥c − xi∥ − R), then finding the
optimal paramaters of the hypersphere reduces to solving:

min
c,R≥0,ξ∈Rm

R2 + C
m∑

i=1

ξi

s.t. ∥c − xi∥ ≤ R2 + ξi , ξi ≥ 0 ∀i ∈ {1, · · · ,m}.

Anomaly Detection 15 / 27



One class classification - hypersphere

The dual problem:

max
λ

− 1
2
λT X T Xλ+ λT diag(X T X )

s.l. eTλ = 1, 0 ≤ λi ≤ C.

where X =
[
x1 x2 · · · xm

]
.

1 ∥x − c∥2 < R2 → λi = 0, γi = 0

2 ∥x − c∥2 = R2 → 0 < λi < C, γi = 0

3 ∥x − c∥2 > R2 → λi = C, γi > 0

When the data is normalized then SVDD is equivalent with OCSVM.
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Experiments

large C means high penalty of outlyingness (thus large coverage of data)
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Experiments

large C means high penalty of outlyingness (thus large coverage of data)

low C means high margin of the hyperplane (thus large robustness)

however, any datapoint has a certain influence on the decision boundary
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Outline

One class classification: OC-SVM, SVDD. Algorithms.

Robust versions. Algorithms.
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One class classification - reformulation

min
w,ξ∈Rm,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

ξi − ρ

s.t. ⟨w , xi⟩ ≥ ρ− ξi , ξi ≥ 0 ∀i ∈ {1, · · · ,m}.

By elimination of ξ we obtain:

min
w,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

max{0, ρ− ⟨w , xi⟩}︸ ︷︷ ︸
Hρ(⟨w,xi⟩)

−ρ.

We denote hinge penalty (convex) function: Hρ(z) := max{0, ρ− z}.
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One class classification - reformulation

if a datapoint falls above the hyperplane wT z ≥ ρ, then no penalty
Hρ(z) = 0

otherwise, if wT z < ρ, then a penalty corresponding to the distance of
this point to the hyperplane will be applied

one can ”robustify” Hρ(z) by limiting the penalty to a given threshold
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One class classification - reformulation

Ramp function Rρ,s(z) =


0, if z ≥ ρ

ρ− z, if ρ− s < z < ρ

s, if z < ρ− s.
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Ramp OC-SVM

Given parameters s, ν then

min
w,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

Rρ,s(⟨w , xi⟩)− ρ.

This new problem is nonconvex nondifferentiable

Notice that Rρ,s(z) = Hρ(z)− Hρ−s(z) (difference of convex function)

Based on this observation we can derive a simple iterative first-order
algorithm.
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Ramp OC-SVM

Given parameters s, ν then

min
w,ρ∈R

1
2
∥w∥2 +

1
mν

m∑
i=1

Rρ,s(⟨w , xi⟩)− ρ

=
1
2
∥w∥2 +

1
mν

m∑
i=1

Hρ(⟨w , xi⟩)− ρ︸ ︷︷ ︸
convex

− 1
mν

m∑
i=1

Hρ−s(⟨w , xi⟩)︸ ︷︷ ︸
convex

.
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Ramp OC-SVM

DC algorithm

1 Initialize (w1, ρ1) and k := 0

2 (wk+1, ρk+1) =

argmin 1
2∥w∥2+ 1

mν

m∑
i=1

Hρ(⟨w , xi⟩)−ρ− 1
mν

m∑
i=1

⟨
[
xi
1

]
H ′

ρk−s(⟨wk , xi⟩), (w , ρ)⟩

3 If (wk+1, ρk+1) satisfies the convergence criterion, then STOP; otherwise,
k := k + 1 and reiterate.
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Ramp OC-SVM

Dual DC algorithm

1 Compute δi =

{
− 1

mν ρ− (wk )Tϕ(xi) > s
0, otherwise

.

2 λk+1 := max
λ

− 1
2λ

T Kλ s.l. eTλ = 1, −νmδi ≤ λi ≤ 1
mν − νmδi .

3 If λk+1 satisfies the convergence criterion, then STOP; otherwise,
k := k + 1 and reiterate.

If the number of iterations is T then Dual DC solves T QP dual problems.

DC provides the pair λ∗, ρ∗.

Test on new sample x : evaluate sgn (
∑

i λ
∗
i k(xi , x)− ρ∗)
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Experiments (synthetic in 2D)

ν estimate the ratio of outliers

outliers have a lower impact over Ramp-OCSVM
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Experiments (synthetic in 2D)
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Experiments (synthetic in 2D)

for small ν OCSVM shift towards outliers

Ramp-OCSVM controls this shifting through parameter s
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Experiments (synthetic in 2D)
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Experiments (synthetic in 2D)

behaviour comparison against changing the kernel parameter γ
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