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@ One class classification: OC-SVM, SVDD. Algorithms.

@ Robust versions. Algorithms.
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One class classification

Consider the training data is provided:

X1, X2, - 7XmCX-

where m is the number of the observations and X some space (i.e. compact
subset of R").

What is a "good” binary function f that captures the "region” of the most of
datapoints where returns +1, and —1 elsewhere ?
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One class classification

Consider the training data is provided:
X17X23“' aXm - X

where m is the number of the observations and X some space (i.e. compact
subset of R").

A simple answer: convex bodies such as
@ hyperplanes
@ spheres

@ ellipsoids
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One class classification - hyperplane

Consider the training data is provided:
X1, X2, Xm C X.

where m is the number of the observations and X some space (e.g. compact
subset of R").

hyperplanc

i
el o .
¢ Classa

- . \

4. Hyperplane in one-class support vector machine.

Idea: The inliers are grouped in a region far from the origin.
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One class classification - hyperplane

Consider the training data is provided:
X17X23"' aXm - X

where m is the number of the observations and X some space (e.g. compact
subset of R").
Prior assumptions:

@ the inliers are distributed in a region separable from the origin by a
hyperplane

@ the outliers lies near the origin

Take the decision function as f(x) = sgn(w’x — p), then find the optimal
paramaters (w, p) of the hyperplane such that:

T
W' Xinlier > P

-
W Xoutiier < p-
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One class classification - hyperplane

XN

@ In the separable case, there is an infinite number of hyperplanes of
choice
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One class classification - hyperplane

XN

@ In the separable case, there is an infinite number of hyperplanes of
choice

@ Let the distance from the origin (of a hyperplane) be named as margin,
then we desire to obtain the hyperplane with the maximal margin.
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One class classification - hyperplane

$0),

@ In the separable case, there is an infinite number of hyperplanes of
choice

@ Let the distance from the origin (of a hyperplane) be named as margin,
then we desire to obtain the hyperplane with the maximal margin.

@ The distance from x to hyperplane {x : w'x = p} is ‘Wﬂvxvﬁpl
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One class classification - hyperplane

$0),

@ In the separable case, there is an infinite number of hyperplanes of
choice

@ Let the distance from the origin (of a hyperplane) be named as margin,
then we desire to obtain the hyperplane with the maximal margin.

@ The distance from x to hyperplane {x : w'x = p} is ‘Wﬂvxvﬁpl

@ Thus we maximize wi-
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One class classification - hyperplane

@ In order to maximize m, we minimize §||w|? — p

@ In the nonseparable case we allow slack variables ¢ to encode the
outlyingness of nonseparable data:

-
W' Xintier = P

T
§=p— W Xoutier > 0.

2 PR
w&erﬁ!"npeﬂ% 2” I + Zf’

s.t. (w,x) ZP-&,&;ZO vie{1,---,m}.
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One class classification - hyperplane

2 PR
wgeRmpeR 2” I + Z{,

s.t. (w, X)) prg,',f,'zo Vie{l,---,m}.

@ convex QP with m linear inequalities constraints
@ regularization: ||w/||? (justify the minimum margin hyperplane)
@ error slack variables: ¢

@ penalty parameter: 1/v € [1,0)
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Dual Problem

The primal problem is convex (linear constraints):

R TP, (e
min 5 [w]® + my;& p
s.l. WTX,' >p—¢& VYi=1,---'m
£>0.
The large number of constraints makes the primal hard to handle. Therefore,

we take steps toward the dual: let the Lagrange multipliers A,y > 0

1 1 i U
LW.p.& A7) = SIWIE+ > & —p =D MW xi—p+&] = > ik
i=1 i=1

i=1
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Dual Problem

Kuhn-Tucker optimality conditions:

Vo LW, p.E A7) = = A=
1
> <A< —.
v>0,0< A< o

We observe that at optimality we have:

m
w* = E AF X
f &) ‘1‘

The datapoints x’ such that A7 = 0 do not contributes to the problem soluti Fl»;
those for which A} > 0 are support vectors: (w*, x') — p* = 0.
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Dual Problem

The dual problem:
max — 1)\TXXTA
X 2
sl.eTa=1,0<)\ < i
my

where X = [x1 X2 -+ Xml.
@ A convex quadratic objective with a high-dimensional Hessian (m x m).
@ Strictinliers A7 =0, SVs A; > 0.

@ Once optimal A* is computed then w* = 3", A7 x.
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Nonlinear OC-SVM

Back to our data:
X1, X2, Xm C X.

In the non-separable case, we map the training data in high-dimensional
spaces by choosing a function ¢ : X — F such that the inner product
between the images of ¢ can be evaluated some simple kernel:

k(x,y) == (p(x), &(¥))-

Example: Gaussian kernel

_Ix=y?
o

k(x,y):=e
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Nonlinear OC-SVM

¢(X1 )7 ¢(X2)a ce ,¢(Xm) Cc F.

Primal nonlinear problem:

2
w&GR’" €R 2H I +7Z£'
s.t. <W7¢( /)>Zp—fi,§i20 VI€{1aam}

Now the dimension of w is the dimension of feature space. The problem is
still convex and has a similar dual as in the linear case.
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Nonlinear OC-SVM

The dual problem:
-k
m/\ax 2

sl.ea=1,0<)\ < i.
mv

where K = [6(x1) 6(x) - o(xm)]” [600) #0R) - #(xm)].
@ Hessian Kj = (¢(x;), ¢(x;)) and Kjj = 1.
@ Strict inliers A} = 0, SVs A7 > 0.

@ Once optimal \* is computed then w* = 37", A7 ¢(x;).
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How to solve the Dual problem ?

Possible algorithms:

@ off-the-shelf QP solvers: cvxpy, quadprog, MOSEK etc. O(m?)
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How to solve the Dual problem ?

Possible algorithms:
@ off-the-shelf QP solvers: cvxpy, quadprog, MOSEK etc. O(m?)

@ Simplex-type feasible set (mlog(m) to project on)
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How to solve the Dual problem ?

Possible algorithms:
@ off-the-shelf QP solvers: cvxpy, quadprog, MOSEK etc. O(m?)
@ Simplex-type feasible set (mlog(m) to project on)

@ The cost of a first-order iteration: gradient evaluation O(m?) + projection
onto the simple O(mlog(m)).
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How to solve the Dual problem ?

Possible algorithms:
@ off-the-shelf QP solvers: cvxpy, quadprog, MOSEK etc. O(m?)
@ Simplex-type feasible set (mlog(m) to project on)

@ The cost of a first-order iteration: gradient evaluation O(m?) + projection
onto the simple O(mlog(m)).

@ Best suggestion: approach large-scale instances by coordinate descent
algorithms (scitkit-learn uses libsvm for training)
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Basic coordinate descent algorithms

min 1ATHA +b"A
A 2

sl.eTa=1,0< ) <C.

Idea of CD

Instead of approximating the whole X at each iteration, update only a small
block of variables.
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Basic coordinate descent algorithms

min 1)\TH/\ +b"A
A2

sl.eTaA=1,0< ) <C.

Idea of CD

Instead of approximating the whole X at each iteration, update only a small
block of variables.

Example CD
Exact 2-coordinate descent: choose (i,j) € {1,---,m}; let \j = [\ \j]”

1
\j = arg il §()\,2 + XF) + Kjdidj + by \j

S.|.)\,‘+)\j=A70§>\,’,)\j§C. p
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Basic coordinate descent algorithms

min SATHA + b7\
A2
sl.eTA=1,0< ) <C.
Exact 2-coordinate descent main loop:
@ choose (i,j) € {1,---, m} (cyclic, random etc.)
@ update:
Aj = arg rrj\llln E()\'z +A2) + KjAi\j + bf Ay
s.l. Ai+A=A, 02,0 < C.
where A =1 -3 i Ar.
Q /\; = /\7; and )\,-T- = Aj
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One class classification - hypersphere

Consider the training data is provided:
X1, X2, Xm C X.

where m is the number of the observations and X some space (i.e. compact
subset of R").
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One class classification - picture

Take the decision function as f(x) = sgn(]|c — x;|| — R), then finding the
optimal paramaters of the hypersphere reduces to solving:

¢,R>0,£€R™

m
min R+ CZ&
i=1

st llc—xll <RP+&,6>0 Vie{t,.-- m}

Anomaly Detection 15/27



One class classification - hypersphere

The dual problem:
max — %)\TXTXA + A diag(X" X)
sl.eTa=1,0< ) <C.
where X = [x1 X2 -+ Xml.
Q [x—cl?<R?—=X=0,7=0
Q x—clP=R?—-0<)\<C,y=0
Q|x—cP>R—=)\=C,v>0
When the data is normalized then SVDD is equivalent with OCSVM.
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C=25.0
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@ large C means high penalty of outlyingness (thus large coverage of data)
@ low C means high margin of the hyperplane (thus large robustness)

@ however, any datapoint has a certain influence on the decision boundary
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@ One class classification: OC-SVM, SVDD. Algorithms.

@ Robust versions. Algorithms.
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One class classification - reformulation

2 PR
welmin eRQH =+ — Z&
s.t. <W7XI>ZP_§i7§iZO VIE{.I,,m}

By elimination of ¢ we obtain:

_min f||w||2+—2max{o p— (W, X)) —p.
Wope i=1

Ho ((w,xi))

We denote hinge penalty (convex) function: H,(z) := max{0, p — z}.
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One class classification - reformulation

H,(z)

\
N

P z

a) The Hinge Loss
for OC-SVM

@ if a datapoint falls above the hyperplane w’z > p, then no penalty
Hy(z) =0
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One class classification - reformulation

H,(z)

\
N

P z

a) The Hinge Loss
for OC-SVM

@ if a datapoint falls above the hyperplane w’z > p, then no penalty
H,(z)=0

@ otherwise, if w’z < p, then a penalty corresponding to the distance of__
this point to the hyperplane will be applied
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One class classification - reformulation

H,(z)

\
N

P z

a) The Hinge Loss
for OC-SVM

@ if a datapoint falls above the hyperplane w’z > p, then no penalty
H,(z)=0

@ otherwise, if w’z < p, then a penalty corresponding to the distance of__
this point to the hyperplane will be applied

@ one can “robustify” H,(z) by limiting the penalty to a given threshold
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One class classification - reformulation

A
R,.(z)
T >
b)The Ramp Loss
for OC-SVM
0, ifz>p
@ Ramp function R, s(z) =< p—2z, ifp—s<z<p
S, ifz<p-—s.
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Ramp OC-SVM

Given parameters s, v then

I TP, QL
WT)QR §||WH + o ; R, s({(w,x;)) — p.

@ This new problem is nonconvex nondifferentiable
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Ramp OC-SVM

Given parameters s, v then

I TP, QL
WT)QR §||WH + o ; R, s({(w,x;)) — p.

@ This new problem is nonconvex nondifferentiable

@ Notice that R, s(z) = H,(z) — H,—s(z) (difference of convex function)
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Ramp OC-SVM

Given parameters s, v then

I IR
LN §||WH T ; Rp.s({w, X)) — p.
@ This new problem is nonconvex nondifferentiable

@ Notice that R, s(z) = H,(z) — H,—s(z) (difference of convex function)

@ Based on this observation we can derive a simple iterative first-order
algorithm.
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Ramp OC-SVM

Given parameters s, v then

R TP, [
W'j;'enREHWH +EZR,3(<W’X/>)*P

i=1

= §||WH +W2Hp(<waxi>)—/’—ﬁ Ho—s((w, x;)) .
i=1 i=1
convex convex
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Ramp OC-SVM

DC algorithm
@ Initialize (wy,p1) and k :=0
Q (Wiki1,pk41) =

arg min 3[|w|2 + z H,((w, x,->)_p_n]wl_§1<[ ] H,_o((Wk, X)), (W, p))

@ If (w1, pk41) satisfies the convergence criterion, then STOP; otherwise,
k := k + 1 and reiterate.
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Ramp OC-SVM

Dual DC algorithm

1 K\T

—me P— (W) Te(x) > s

Compute §; = my .
o pute o {O, otherwise

Q N\t .= max —IATKX sl.eTa=1, —vms; < )\ < - —vmg;.

mv

© If Mkt satisfies the convergence criterion, then STOP; otherwise,
k := k + 1 and reiterate.

@ If the number of iterations is T then Dual DC solves T QP dual problems.
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Ramp OC-SVM

Dual DC algorithm

1 K\T

—me P— (W) Te(x) > s

Compute §; = my .
o pute o {O, otherwise

Q N\t .= max —IATKX sl.eTa=1, —vms; < )\ < - —vmg;.

mv

© If Mkt satisfies the convergence criterion, then STOP; otherwise,
k := k + 1 and reiterate.

@ If the number of iterations is T then Dual DC solves T QP dual problems.

@ DC provides the pair \*, p*.
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Ramp OC-SVM

Dual DC algorithm

q

—m = (W)Te(x) > s
C te §; = my .
@ Compute {O, otherwise

Q N\t .= max —IATKX sl.eTa=1, —vms; < )\ < - —vmg;.

mv

© If Mkt satisfies the convergence criterion, then STOP; otherwise,

k := k + 1 and reiterate.
@ If the number of iterations is T then Dual DC solves T QP dual problems.
@ DC provides the pair \*, p*.

@ Test on new sample x: evaluate sgn (>, A\fk(x;, X) — p*)
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Experiments (synthetic in 2D)

s Ramp OC-SVM, »=0.1 y= 0.1s=0.01 s OC-SVM, »=0.1y= 0.1
4 .. 4 ..
3 3
[e) [e)
2 i S %
1 (d 1 °
. 0 8. 0
1357, B 137
1 (o} © oS & -1 (o} ° §> 0089
g % ?%@%% * N | 8538
J & 4 %
L] L ]
4 o ® -4 o ®
5 -5
5 5 -5 0 5
a b
@ v estimate the ratio of outliers
@ outliers have a lower impact over Ramp-OCSVM @a
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Experiments (synthetic in 2D)

Ramp OC-SVM, »=0.5y= 0.1s=0.01

EEE N

OC-SVM, »=0.5y= 0.1

N
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Experiments (synthetic in 2D)

Ramp OC-SVM, »= 0.1y = 0.3 s =0.003

OC-SVM, v=0.1 y= 0.3

L) Of
% : %
&S i | ek T
%%30 85 0 %%@o 8
5 ° %) Sge 4 5 ) §> Sgo
0 6022 - 0 ©02%2
& %’él%%pgo o & R o
@0 @0
=) 3 &P
-5
0 5 -5 0
e f

Anomaly Detection

@ for small v OCSVM shift towards outliers
@ Ramp-OCSVM controls this shifting through parameter s
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Experiments (synthetic in 2D)
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Experiments (synthetic in 2D)

s Ramp OC-SVM, »=0.1 v = 0.5s =0.005 s OC-SVM, »=0.1y= 0.5
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