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Class structure

Topics for today:
@ discuss characteristics of time series
@ change-point model for time series
@ average and linear models for time series

@ anomaly detection
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Time series characteristics

What is a time series?
For us, in this class: time series = vector of real values + time stamp

They appear everywhere where a phenomenon is monitored:
@ finance (performance indicator measurements)
@ healthcare (vital sign measurements)
@ industry (sensor measuments)

Two questions that will interest us today:
@ do time series suffer significant changes over time?

@ is there something anomalous in the time series?
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Time series characteristics

What is the first thing that comes to mind when trying to work with time
series?
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Time series characteristics

What is the first thing that comes to mind when trying to work with time
series?

@ seems to be a 1D regression problem (if we ignore the time information)

@ how can we turn in into a regression problem and keep the time
information?

@ the regression problem can be extended into multiple dimensions
(feature engineering)

@ average a couple of values from the past to try to predict new values (in
the style of K-NN)

@ try to find seasonal components in the data (peridicity analysis - Fourier)
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Time series characteristics

A typical time series composed of random data plus a linear trend (source:
Wikipedia)
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Time series characteristics

Another typical time series Dollar vs. Euro exchange (source: Google)

0,92 18 nov. 2023
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Time series characteristics

Another typical time series Dollar vs. Euro exchange, with an orange change
point (source: Google)

0,92 vin., 18 oct.

9 nov.

time series like this are not non-stationary

what would linear regression look like on this data?
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Change point detection for time series introduction

Problem: given a time series, retrieve K points in the time series where a
significant change occurs (source: US unemployment data)

@ find how many change points there are

@ tell us where these change points are
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Anomaly detection for time series introduction

Problem: given a time series, retrieve the points where something unusual
happens
@ what is the definition of unusual?

@ how many unusual points are you looking for?

Machine Temperature Sensor Data
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Change point detection

Goals:
@ find the abrupt changes in the time series x[n]
@ find the time at which these happen
@ find how many there are
@ we call the set of times where an abrupt change happens 7*
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Change point detection

Problem statement

K
(..., 1) = argmin » _ c(x[t : tis1]) (1)
t1,...,tK k:1
We have made the following notation:
@ t : tk11 is Matlab notation for the set {#, t +1,...,f1 — 1}

@ cis a cost function that measures homogeneity

@ what are some good picks for the cost function ¢?
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Change point detection

Problem statement

K
(..., 1) = argmin » _ c(x[t : tis1]) (1)
t1,...,tK k:1
We have made the following notation:
@ t : tk11 is Matlab notation for the set {#, t +1,...,f1 — 1}

@ cis a cost function that measures homogeneity
@ what are some good picks for the cost function ¢?

log likelihood term

the mean

the median

the error (RMSE) of a linear model

the error (RMSE) of a more sophisticated linear model
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Change point detection

Choices for the cost function:
Q Goron(te : tr1) = —max ZZE; log p(x[n][0)

tp1—1
Q aia(tk: ties1) = 2opih X[ — paten,, 113

tir —1
Q ox(ti: teer) = (b—a)logofy  + o — nt " IX[0] — pger,, 13
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Change point detection

US Unemployment

Unemployment rate in the USA
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Change point detection

US Unemployment - co, K =7
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Change point detection

US Unemployment - ¢y, K =7
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Change point detection

US Unemployment - ¢gin, K =7
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Change point detection: the algorithm

Solve optimally by dynamic programming

For
K
V(T,x) = Z c(x[t : tesa])
k=0
we have that
K
\';I‘l\!]K V(T7 X) - 0:lo<f1<..n.1<”};<<fK+1:N g C(X[tk : tk-H])
K—1
- tSnIvEK [C(X[O H) + t0=t<t1<'m<irt‘K_1<tK=N§ U tkﬁl)}
= tgnlUEK [c(x[O 1)) + ‘7_r|1;ilr<17I V(T, x[t: N]):|
Complexity?
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Change point detection: the algorithm

Solve optimally by dynamic programming

For

K

V(T,x) = Z c(x[t : tesa])

k=0

we have that

K
in V(T = i o b
Jin, (T,x) R N kz_; c(xtk : teta])
K=1
= i 0: f] i [P Y
i [c(X[ D + [0=t<tl<vg1<|?K_]<tK=N§ ([t k+1])}

t<N T|=

= miEK [c(x[O 1)) + | milr<171 V(T, x[t: N]):|

Complexity? O(KN?)
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Change point detection: finding optimum K

@ run for all values K from 1 to Kax

@ find an “elbow” in the resulting curve
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how would you integrate the K into the problem itself?
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Change point detection: finding the optimum K

New, regularized problem statement (penalized change point detection)
K

(t,..., 1) :atrgmtinZC(X[tk Dlr]) + AK (2)
=

@ this type of regularization is typical in machine learning

@ the size of the solution set 7T is taken into account at each step of the
algorithm

@ many algorithms have been proposed for this task

@ new problem: find A € R, (in general there is no clear formula between
A and K)
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Anomaly detection

After we have the change point splitting done we can do several things:

@ for the mean and statistical cost functions ¢ » and cs we can use
methods developed in Lecture 5 Statistical algorithms: truncation, LODA

@ for the regression (linear) statistical cost function ¢;, we can use the
leverage scores developed in Lecture 2 Leverage scores for linear
regression

@ the third option is to use an adaptive model that changes with the time
series
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Anomaly detection

Easy example
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Anomaly detection

Easy example

Search Volume For The Term 'Puppy’

Search Volume

T T T
2010 2011 2012 2013 2014 2015

23/29

Anomaly Detection



Anomaly detection

Easy example

Enplanements for U.S. Air Carrier Domestic, Scheduled Passenger Flights
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Anomaly detection

Mu-sigma model: |x[n] — u| > Ao (A = 1.5 window of size 12)

Enplanements for U.S. Air Carrier Domestic, Scheduled Passenger Flights
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Anomaly detection

Glven a chunk of size L try to find in the time series a similar pattern

pattern[n] = mind(x[n: n+L—1],x[i : i+L—1]) fori < n—Land i > n+L (3)
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Anomaly detection

Model based: AR model reconstruction

—— Original signal 1
Reconstruction AR{12) model
70000
d
60000
u
50000
40000
30000
2000 20‘02 20'04 20‘05 ZﬂhB ZOIID 20’12 20‘14 20’16 20‘1&

Date

Anomaly Detection 27/29



Anomaly detection

Model based: AR model error

Reconstruction error
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