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P eigenvalue and singular value decomposition
» Principal Component Analysis
> Robust PCA

» Matrix Factorization

The course references are Aggarwal 2017, Ch.3 with papers for
Robust PCA by Candeés et al. 2011 and Netrapalli et al. 2014.

For a thorough recap of eigen and singular values see Golub and
Van Loan 2013.
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Given square matrix A € R™" then its eigenvalues A and
associated eigenvectors v follow:

Av = \v (1)
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of the polynomial det(A — \l,) =0

There are n eigenvalues and eigenvectors, thus we can write the
eigenvalue decomposition (EVD):

AV = VA — A=Vv'av (2)

Remark: For symmetric matrices AT = A we have V-1 = VT

such that A= VAV, @’
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Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A € R"*™ the singular values o, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Av=0ov ; Alu=ou (3)

There are min(n, m) singular values, n left singular vectors, and m
right singular vectors, thus we can write the singular value
decomposition (SVD):

min{n,m}
A=Usv = 3 oy (4)
i=1

Theorem: The optimal low-rank matrix L € R"*™ with rank k
that approximates A is Zf-‘zl a,-u,-v,-T.



Least Squares (LS)

Given data X € RVN*9 where d is the data dimension and N the
number of samples, the least-squares problem solves the following:

min X5 — ylI7 (5)

» when N = d we have * = X~ 1y
» when N > d we have g* = (XTX) X Ty
» when N < d we have g% = XT(XXT)"1y

See Lecture 2 for more details.




LS: line fit
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Figure: LS fits 2D points on a line

Source: https://en.wikipedia.org/wiki/Linear_least_squares



https://en.wikipedia.org/wiki/Linear_least_squares

LS: projection

S =ImA

Figure: LS projects vectors on ImA




Least-squares properties:
» finds d — 1 subspace or hyperplane
» the hyperplane is an optimum fit to data

» anomaly score: based on length on orthogonal direction




Least-squares properties:
» finds d — 1 subspace or hyperplane
» the hyperplane is an optimum fit to data

» anomaly score: based on length on orthogonal direction

Generalization:
» what is the k < d subspace or hyperplane?
» what is the anomaly score then?

» what is an optimum fit on any k-dimensional subspace?
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Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd ;
X' X
Y = 6
- (6)
such that ¥ € R9%? where element Y ; is the covariance between
data dimension i and j.

Properties:
» the covariance matrix is symmetric and positive definite
> the EVD of ¥ = PAPT
> A is diagonal and contains the eigenvalues between \;,.x and
Amin
> P c RY%9 represents the orthonormal eigenvectors of the
covariance corresponding to A

» the normal hyperplane to pmin € P is the LS-hyperplane of @’
dimension k=d — 1
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PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd

_XTXx

b))
N

= PAP' (7)
such that ¥ € R9*9,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

This implies that:

P the eigenvectors subspace corresponding to the largest d — 1
eigenvalues provides a good data approximation

» what about k =d —2orany ke[d—-1]={1,...,d —1}7?

P the subspace will be generated by the largest k eigenvectors
such that the residual is minimal

P anomalies are the data whose error is high in this new
subspace @'

P anomalies have a large normal component



Example: Principal Eigenvectors
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Figure: Distribution along first k = 3 eigenvectors (Aggarwal 2017)
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Implications:

» the new axis of the data representation are the k orthonormal
eigenvectors

P there is no covariance in this new subspace as the eigenvectors
are orthogonal

» the variance along each axis is the eigenvalue

» a small eigenvalue implies a low variance
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Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

2

>

v

the new axis of the data representation are the k orthonormal
eigenvectors

there is no covariance in this new subspace as the eigenvectors
are orthogonal

the variance along each axis is the eigenvalue
a small eigenvalue implies a low variance

can we cancel axis with small eigenvalues? E.g. A < 1073
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PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

| 2

v

vvyyypy

the new axis of the data representation are the k orthonormal
eigenvectors

there is no covariance in this new subspace as the eigenvectors
are orthogonal

the variance along each axis is the eigenvalue
a small eigenvalue implies a low variance
can we cancel axis with small eigenvalues? E.g. A < 1073

not if we expect anomalies to have higher variance among low

variance axis @’



Example: Eigen Histogram
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Figure: Eigenvalues magnitude and variance (Aggarwal 2017)




Example: Eigen Histogram Trimmed

Figure: Eigenvalues magnitude and variance after trimming (Aggarwal
2017)

g8
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PCA starts from the EVD of the covariance matrix

_XTXx

= PAP'
N

b))

such that & € R9*d,
Then the transformed data space becomes:

X' = XpP (8)
where X' € RN>d,

Using the entire space k = d has the following advantage:
> take small eigenvector p;
» we know that the entries Xéj do not vary much as J; is small

> outlier: if xj; has a large deviation compared to other x;;
entries
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PCA subspace

PCA starts from the EVD of £ = XX = PAPT, then the

transformed data space becomes X’ = XP where X’ € RVx9.

The approximation through trimming the smallest d — k
eigenvectors X' = XP) € RN*k

[ X — XPy|| (9)

will contain in each x;; with j € [K]
Hard outlier score: the residuals representing the distance to the
rank-k hyperplane described by XP.

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.
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PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Decompose the sum of squares of the d — k distances and
normalize by their corresponding eigenvalue:

Score(xg) = i HXZJ _)\XZPJ'H2
j

Jj=k+1

(10)

Result: also reward large deviation along small variance.

Remark: both scores focus on representing data in a
low-dimensional space which induces parameter k: selecting the
dimensionality

g8
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PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

j=1
where p € RY is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: ¥ = PAPT
2. Transform: X' = XP

3. Normalize: X' = X'A~1
4. Anomaly score: Score(x;) V¢ € [N] @,
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PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:

1.

AN A

PCA: compute ¥ = PAPT

Anomaly score: compute associated scores Score(x;) V/ € [N]
Prune: remove obvious outliers from the dataset

Reconstruct: compute new covariance matrix

Goto step 1




Example: Outlier Perturbation
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Figure: Sensitivity to outliers (Aggarwal 2017)
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PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

Score through cross-validation:
» split into m-folds
perform PCA on m — 1 folds

score the data in the mth-fold

>

>

» repeat for each fold

> alternative: use sub-sampling @’



Robust PCA

Treat measurement matrix as the super-position of a low-rank
matrix with a sparse noise matrix X = Lg + Sg, then recovering Lg
and Sy involves solving the following optimization problem

argminp(L) + A ||S]l, st [ X—L—S|2=0 (12)
L,S

where p(L) is the rank function and ||-||, is the £o-norm counting
the number of non-zeros.




Robust PCA

Treat measurement matrix as the super-position of a low-rank
matrix with a sparse noise matrix X = Lg + Sg, then recovering Lg
and Sy involves solving the following optimization problem

argminp(L) + A ||S]l, st [ X—L—S|2=0 (12)
L,S

where p(L) is the rank function and ||-||, is the £o-norm counting
the number of non-zeros.

Candés et al. 2011 show that the convex relaxation of the above
can recover Ly and Sg under mild assumpitons

ag@MML+MwmsLHX—L—ﬂﬁ:o (13)

where |[|-||, is the nuclear norm summing the singular values. @



Escalator Example: PCA versus Robust PCA

Figure: Background separation: truth, PCA and two RPCA
implementations (Netrapalli et al. 2014)




Restaurant Example: PCA versus Robust PCA

Figure: Background separation: truth, PCA and two RPCA
implementations (Netrapalli et al. 2014)
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PCA: sample space versus feature space

What if we used § = XX T € RV*N jnstead of X?
The EVD of S becomes:

S=XX" = QA*Q" (14)

where Q € RV*N are the orthonormal eigenvectors such that only
the first d correspond to non-zero eigenvalues.

The transform in the sample space is:

X' = X(QA)qg (15)

g8

where we can easily see that [X' O] = XQA = [X(QA)q4 O].
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Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
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