Anomaly Detection

Dimensionality reduction: PCA, robust PCA

Paul Irofti
Andrei P3trascu
Cristian Rusu

Computer Science Department
Faculty of Mathematics and Computer Science
University of Bucharest

Email: first.last@fmi.unibuc.ro

P eigenvalue and singular value decomposition
» Principal Component Analysis
> Robust PCA

» Matrix Factorization

The course references are Aggarwal 2017, Ch.3 with papers for
Robust PCA by Candeés et al. 2011 and Netrapalli et al. 2014.

For a thorough recap of eigen and singular values see Golub and
Van Loan 2013.

Preliminaries

Eigenvalues and Eigenvalue Decomposition (EVD)

Given square matrix A € R™" then its eigenvalues A and
associated eigenvectors v follow:

Av = \v (1)

which can be obtained through (A — Al,)v = 0 or the factorization
of the polynomial det(A — \l,) =0

Eigenvalues and Eigenvalue Decomposition (EVD)

Given square matrix A € R™" then its eigenvalues A and
associated eigenvectors v follow:

Av = \v (1)

which can be obtained through (A — Al,)v = 0 or the factorization
of the polynomial det(A — \l,) =0

There are n eigenvalues and eigenvectors, thus we can write the
eigenvalue decomposition (EVD):

AV = VA — A=Vv'av (2)

Eigenvalues and Eigenvalue Decomposition (EVD)

Given square matrix A € R™" then its eigenvalues A and
associated eigenvectors v follow:

Av = \v (1)

which can be obtained through (A — Al,)v = 0 or the factorization
of the polynomial det(A — \l,) =0

There are n eigenvalues and eigenvectors, thus we can write the
eigenvalue decomposition (EVD):

AV = VA — A=Vv'av (2)

Remark: For symmetric matrices AT = A we have V-1 = VT

such that A= VAV, @’

Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A € R"*™ the singular values o, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A € R"*™ the singular values o, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Av=0ov ; Alu=ou (3)

There are min(n, m) singular values, n left singular vectors, and m
right singular vectors, thus we can write the singular value
decomposition (SVD):

min{n,m}
A=Usv = 3 oy (4)
i=1

Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A € R"*™ the singular values o, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Av=0ov ; Alu=ou (3)

There are min(n, m) singular values, n left singular vectors, and m
right singular vectors, thus we can write the singular value
decomposition (SVD):

min{n,m}
A=Usv = 3 oy (4)
i=1

Theorem: The optimal low-rank matrix L € R"*™ with rank k
that approximates A is Zf-‘zl a,-u,-v,-T.

Least Squares (LS)

Given data X € RVN*9 where d is the data dimension and N the
number of samples, the least-squares problem solves the following:

min X5 — ylI7 (5)

» when N = d we have * = X~ 1y
» when N > d we have g* = (XTX) X Ty
» when N < d we have g% = XT(XXT)"1y

See Lecture 2 for more details.

LS: line fit

10_ ° .Data
ob —.cur\.r.efit Y
2 N
=24

Tho i e
6_
5_ A
4 i

0 1 2 3 4 5

Figure: LS fits 2D points on a line

Source: https://en.wikipedia.org/wiki/Linear_least_squares

https://en.wikipedia.org/wiki/Linear_least_squares

LS: projection

S =ImA

Figure: LS projects vectors on ImA

Least-squares properties:
» finds d — 1 subspace or hyperplane
» the hyperplane is an optimum fit to data

» anomaly score: based on length on orthogonal direction

Least-squares properties:
» finds d — 1 subspace or hyperplane
» the hyperplane is an optimum fit to data

» anomaly score: based on length on orthogonal direction

Generalization:
» what is the k < d subspace or hyperplane?
» what is the anomaly score then?

» what is an optimum fit on any k-dimensional subspace?

Principal Component Analysis

Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data

matrix X € RVxd

XTXx 6
- (6)

such that ¥ € R9%? where element Y ; is the covariance between

data dimension i and j.

> —

Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd
XTXx 6
- (6)
such that ¥ € R9%? where element Y ; is the covariance between
data dimension i and j.

> —

Properties:

» the covariance matrix is symmetric and positive definite

Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd
XTXx 6
- (6)
such that ¥ € R9%? where element Y ; is the covariance between
data dimension i and j.

> —

Properties:
» the covariance matrix is symmetric and positive definite

> the EVD of ¥ = PAPT

Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data

matrix X € RVxd

XTXx (6)
N

such that ¥ € R9%? where element Y ; is the covariance between
data dimension i and j.

> —

Properties:

» the covariance matrix is symmetric and positive definite
> the EVD of ¥ = PAPT

> A is diagonal and contains the eigenvalues between \;,.x and

)\min

Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data

matrix X € RVxd

XTXx (6)
N

such that ¥ € R9%? where element Y ; is the covariance between
data dimension i and j.

> —

Properties:

» the covariance matrix is symmetric and positive definite

> the EVD of ¥ = PAPT

> A is diagonal and contains the eigenvalues between \;,.x and
)\min

> P c RY%9 represents the orthonormal eigenvectors of the
covariance corresponding to A

g8

Principal Component Analysis (PCA)

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd ;
X' X
Y = 6
- (6)
such that ¥ € R9%? where element Y ; is the covariance between
data dimension i and j.

Properties:
» the covariance matrix is symmetric and positive definite
> the EVD of ¥ = PAPT
> A is diagonal and contains the eigenvalues between \;,.x and
Amin
> P c RY%9 represents the orthonormal eigenvectors of the
covariance corresponding to A

» the normal hyperplane to pmin € P is the LS-hyperplane of @’
dimension k=d — 1

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd
B XTXx

b))
N

= PAPT (7)

such that ¥ € RIxd,

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd
B XTXx

N = PAPT (7)

b))

such that ¥ € RIxd,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd

_XTXx

b))
N

= PAP' (7)
such that ¥ € R9*9,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

This implies that:
P the eigenvectors subspace corresponding to the largest d — 1
eigenvalues provides a good data approximation

g8

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd

_XTXx

b))
N

= PAP' (7)
such that ¥ € R9*9,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

This implies that:
P the eigenvectors subspace corresponding to the largest d — 1

eigenvalues provides a good data approximation
» what about k =d —2orany ke[d—-1]={1,...,d —1}7?

g8

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd

_XTXx

b))
N

= PAP' (7)
such that ¥ € R9*9,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

This implies that:
P the eigenvectors subspace corresponding to the largest d — 1
eigenvalues provides a good data approximation
» what about k =d —2orany ke[d—-1]={1,...,d —1}7?
P the subspace will be generated by the largest k eigenvectors
such that the residual is minimal

g8

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd

.
3= XNX = PAPT (7)

such that ¥ € RIxd,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

This implies that:

P the eigenvectors subspace corresponding to the largest d — 1
eigenvalues provides a good data approximation

» what about k =d —2orany ke[d—-1]={1,...,d —1}7?

P the subspace will be generated by the largest k eigenvectors
such that the residual is minimal

P anomalies are the data whose error is high in this new
subspace @'

PCA as Generalized LS

PCA starts from the covariance matrix of the mean-centered data
matrix X € RVxd

_XTXx

b))
N

= PAP' (7)
such that ¥ € R9*9,

Remark: the normal hyperplane to pmi, € P is the LS-hyperplane
of dimension k = d — 1.

This implies that:

P the eigenvectors subspace corresponding to the largest d — 1
eigenvalues provides a good data approximation

» what about k =d —2orany ke[d—-1]={1,...,d —1}7?

P the subspace will be generated by the largest k eigenvectors
such that the residual is minimal

P anomalies are the data whose error is high in this new
subspace @'

P anomalies have a large normal component

Example: Principal Eigenvectors

30

20
X Outlier
10
N
g o
2
<
w
w
-10
-20
-30 - DATAPONTS
A\
-50 EIGENVECTOR 1
- - - - EIGENVECTOR 2
0 - — — EIGENVECTOR 3
20 30
FEATURE Y -40 -30 -20 -10 0 10

FEATURE X

Figure: Distribution along first k = 3 eigenvectors (Aggarwal 2017)

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.
Implications:

» the new axis of the data representation are the k orthonormal
eigenvectors

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

» the new axis of the data representation are the k orthonormal
eigenvectors

P there is no covariance in this new subspace as the eigenvectors
are orthogonal

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

2

>

the new axis of the data representation are the k orthonormal
eigenvectors

there is no covariance in this new subspace as the eigenvectors
are orthogonal

the variance along each axis is the eigenvalue

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

» the new axis of the data representation are the k orthonormal
eigenvectors

P there is no covariance in this new subspace as the eigenvectors
are orthogonal

» the variance along each axis is the eigenvalue

» a small eigenvalue implies a low variance

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

2

>

v

the new axis of the data representation are the k orthonormal
eigenvectors

there is no covariance in this new subspace as the eigenvectors
are orthogonal

the variance along each axis is the eigenvalue
a small eigenvalue implies a low variance

can we cancel axis with small eigenvalues? E.g. A < 1073

g8

PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:

| 2

v

vvyyypy

the new axis of the data representation are the k orthonormal
eigenvectors

there is no covariance in this new subspace as the eigenvectors
are orthogonal

the variance along each axis is the eigenvalue
a small eigenvalue implies a low variance
can we cancel axis with small eigenvalues? E.g. A < 1073

not if we expect anomalies to have higher variance among low

variance axis @’

Example: Eigen Histogram

“00 150
INCREASING INDEX OF EIGENVALL

Figure: Eigenvalues magnitude and variance (Aggarwal 2017)

Example: Eigen Histogram Trimmed

Figure: Eigenvalues magnitude and variance after trimming (Aggarwal
2017)

g8

PCA starts from the EVD of the covariance matrix

_XTXx

= PAP'
N

b))

such that ¥ € R9*9.

PCA starts from the EVD of the covariance matrix

_XTXx

= PAP'
N

b))

such that & € RI¥9,
Then the transformed data space becomes:
X' = XP (8)

where X’ € RNxd,

PCA starts from the EVD of the covariance matrix

_XTXx

= PAP'
N

b))

such that & € R9*d,
Then the transformed data space becomes:

X' = XpP (8)
where X' € RN>d,

Using the entire space k = d has the following advantage:

PCA starts from the EVD of the covariance matrix

_XTXx

= PAP'
N

b))

such that & € R9*d,
Then the transformed data space becomes:

X' = XpP (8)
where X' € RN>d,

Using the entire space k = d has the following advantage:

> take small eigenvector p;

PCA starts from the EVD of the covariance matrix

_XTXx
TN

b))

= PAP'
such that & € R9*d,
Then the transformed data space becomes:
X' = XpP (8)
where X' € RN>d,

Using the entire space k = d has the following advantage:
> take small eigenvector p;

» we know that the entries Xéj do not vary much as J; is small

PCA starts from the EVD of the covariance matrix

_XTXx

= PAP'
N

b))

such that & € R9*d,
Then the transformed data space becomes:

X' = XpP (8)
where X' € RN>d,

Using the entire space k = d has the following advantage:
> take small eigenvector p;
» we know that the entries Xéj do not vary much as J; is small

> outlier: if xj; has a large deviation compared to other x;;
entries

PCA subspace

PCA starts from the EVD of £ = XX = PAPT, then the
transformed data space becomes X’ = XP where X’ € RVx9.

PCA subspace

PCA starts from the EVD of £ = XX = PAPT, then the
transformed data space becomes X’ = XP where X’ € RVx9.

The approximation through trimming the smallest d — k
eigenvectors X' = XP) € RN*k

[X — XPy|| (9)

will contain in each x;; with j € [K]

PCA subspace

PCA starts from the EVD of £ = XX = PAPT, then the

transformed data space becomes X’ = XP where X’ € RVx9.

The approximation through trimming the smallest d — k
eigenvectors X' = XP) € RN*k

[X — XPy|| (9)

will contain in each x;; with j € [K]
Hard outlier score: the residuals representing the distance to the
rank-k hyperplane described by XP.

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Decompose the sum of squares of the d — k distances and
normalize by their corresponding eigenvalue:

Score(xg) = i HXZJ _)\XZPJ'H2
j

Jj=k+1

PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Decompose the sum of squares of the d — k distances and
normalize by their corresponding eigenvalue:

Score(xg) = i HXZJ _)\XZPJ'H2
j

Jj=k+1

Result: also reward large deviation along small variance.

PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Decompose the sum of squares of the d — k distances and
normalize by their corresponding eigenvalue:

Score(xg) = i HXZJ _)\XZPJ'H2
j

Jj=k+1

(10)

Result: also reward large deviation along small variance.

Remark: both scores focus on representing data in a
low-dimensional space which induces parameter k: selecting the
dimensionality

g8

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

Jj=1

where p € RY is the data centroid (the mean vector along the
data dimension).

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

Jj=1

where p € RY is the data centroid (the mean vector along the
data dimension).

Algorithm:

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

j=1
where p € RY is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: ¥ = PAPT

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

j=1
where p € RY is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: ¥ = PAPT
2. Transform: X' = XP

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

j=1
where p € RY is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: ¥ = PAPT
2. Transform: X' = XP

3. Normalize: X' = X'A~1 @’

PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d — k distances.

Mahalanobis performs the normalization across all d directions
2
N CERN]
S = 4 11
core(xp) = 3 (1)

j=1
where p € RY is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: ¥ = PAPT
2. Transform: X' = XP

3. Normalize: X' = X'A~1
4. Anomaly score: Score(x;) V¢ € [N] @,

Robust PCA

PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:

PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:
1. PCA: compute ¥ = PAPT

2. Anomaly score: compute associated scores Score(xy) V/ € [N]

PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.
Robust PCA through iterative pruning:

1. PCA: compute ¥ = PAPT

2. Anomaly score: compute associated scores Score(xy) V/ € [N]

3. Prune: remove obvious outliers from the dataset

PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.
Robust PCA through iterative pruning:
1. PCA: compute ¥ = PAPT
2. Anomaly score: compute associated scores Score(xy) V/ € [N]
3. Prune: remove obvious outliers from the dataset

4. Reconstruct: compute new covariance matrix

PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:

1.

AN A

PCA: compute ¥ = PAPT

Anomaly score: compute associated scores Score(x;) V/ € [N]
Prune: remove obvious outliers from the dataset

Reconstruct: compute new covariance matrix

Goto step 1

Example: Outlier Perturbation

FEATURE Y

© DATAPOINT

REGRESS (Y on X)
— - - - REGRESS (Xon)
— == MIN. PROJ. ERR. (PCA)

FEATURE Y

O DATAPOINT

REGRESS (Y on X)
— = - - REGRESS (XonY)
- —-= MN_PROJ.ERR (PCA)

Figure: Sensitivity to outliers (Aggarwal 2017)

3
FEATURE X

3
FEATURE X

35

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.

Regularization:

» zero variance among some dimensions implies A =0

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

Score through cross-validation:

» split into m-folds

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

Score through cross-validation:
» split into m-folds
» perform PCA on m — 1 folds

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

Score through cross-validation:
» split into m-folds
» perform PCA on m — 1 folds

» score the data in the mt"-fold

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

Score through cross-validation:
» split into m-folds
» perform PCA on m — 1 folds

» score the data in the mt"-fold

» repeat for each fold @’

PCA Strengthening

Normalization: original dimensions scales can very widely —
normalize to unit variance.
Regularization:

» zero variance among some dimensions implies A =0

> regularize the covariance matrix X 4+ aly with o > 0

P shifts all eigenvalues by the constant value «

P equivalent to adding noise with variance «

Score through cross-validation:
» split into m-folds
perform PCA on m — 1 folds

score the data in the mth-fold

>

>

» repeat for each fold

> alternative: use sub-sampling @’

Robust PCA

Treat measurement matrix as the super-position of a low-rank
matrix with a sparse noise matrix X = Lg + Sg, then recovering Lg
and Sy involves solving the following optimization problem

argminp(L) + A ||S]l, st [X—L—S|2=0 (12)
L,S

where p(L) is the rank function and ||-||, is the £o-norm counting
the number of non-zeros.

Robust PCA

Treat measurement matrix as the super-position of a low-rank
matrix with a sparse noise matrix X = Lg + Sg, then recovering Lg
and Sy involves solving the following optimization problem

argminp(L) + A ||S]l, st [X—L—S|2=0 (12)
L,S

where p(L) is the rank function and ||-||, is the £o-norm counting
the number of non-zeros.

Candés et al. 2011 show that the convex relaxation of the above
can recover Ly and Sg under mild assumpitons

ag@MML+MwmsLHX—L—ﬂﬁ:o (13)

where |[|-||, is the nuclear norm summing the singular values. @

Escalator Example: PCA versus Robust PCA

Figure: Background separation: truth, PCA and two RPCA
implementations (Netrapalli et al. 2014)

Restaurant Example: PCA versus Robust PCA

Figure: Background separation: truth, PCA and two RPCA
implementations (Netrapalli et al. 2014)

Nonlinear PCA

PCA: sample space versus feature space

What if we used S = XX T € RV*N instead of X7

PCA: sample space versus feature space

What if we used § = XX T € RV*N jnstead of X?
The EVD of S becomes:

S=XX" = QA*Q" (14)

where Q € RV*N are the orthonormal eigenvectors such that only
the first d correspond to non-zero eigenvalues.

PCA: sample space versus feature space

What if we used § = XX T € RV*N jnstead of X?
The EVD of S becomes:

S=XX" = QA*Q" (14)

where Q € RV*N are the orthonormal eigenvectors such that only
the first d correspond to non-zero eigenvalues.

The transform in the sample space is:

X' = X(QA)qg (15)

g8

where we can easily see that [X' O] = XQA = [X(QA)q4 O].

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:

1. Similarity: Build N x N similarity matrix S using kernel
function &

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:

1. Similarity: Build N x N similarity matrix S using kernel
function &

2. Decomposition: § = QA’QT

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N x N similarity matrix S using kernel
function &
2. Decomposition: S = QA2QT
3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:

1. Similarity: Build N x N similarity matrix S using kernel
function &

2. Decomposition: S = QA2QT
3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

4. Normalize: X' = X'\ ! @

PCA: sample space uses a similarity matrix

Remark: S = XX € RV*N has s;; as the dot-product between x;
and x; thus acting as a similarity matrix.

Remark: the transform § = QA2QT is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:

1. Similarity: Build N x N similarity matrix S using kernel
function &

2. Decomposition: S = QA2QT
3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

4. Normalize: X' = X'A\~! @'
5. Anomaly score: Score(x;) V¢ € [N]

Example: Kernel Space

124
06
N . POINTB PONTC
i POINT A 04

08

0z POINT A

o o2
02 .
-04
06 OUTLIER

08 N
1 o4 s
02 o
o ——
-0z 0
04 o

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:
1. Similarity: Build s x s similarity matrix S using kernel
function x

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:
1. Similarity: Build s x s similarity matrix S using kernel
function x
2. Decomposition: § = QA’QT

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:
1. Similarity: Build s x s similarity matrix S using kernel
function x
2. Decomposition: § = QA’QT
3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:
1. Similarity: Build s x s similarity matrix S using kernel
function x
2. Decomposition: § = QA’QT
3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)
4. Normalize: X' = X'\~ !

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.
Algorithm:
1. Similarity: Build s x s similarity matrix S using kernel
function x
2. Decomposition: § = QA’QT
3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)
4. Normalize: X' = X'\~ !
5. Anomaly score: Score(x;) V¢ € [N]

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:

1. Similarity: Build s x s similarity matrix S using kernel
function x

2. Decomposition: § = QA’QT

3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

4. Normalize: X' = X'\~ !

5. Anomaly score: Score(x;) V¢ € [N]

6. Out-of-sample similarity: Build (N —s) x s similarity matrix
Sp using the same kernel

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:

1. Similarity: Build s x s similarity matrix S using kernel
function x

2. Decomposition: § = QA’QT

3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

4. Normalize: X' = X'\~ !

5. Anomaly score: Score(x;) V¢ € [N]

6. Out-of-sample similarity: Build (N —s) x s similarity matrix
Sp using the same kernel

7. Out-of-sample transform: X} = So(QA 1)« @

Nonlinear PCA: Dealing with large sample spaces

Remark: Computing S = QA%2Q" € RV*N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that kK < s < N thus obtaining an s X s similarity matrix.

Algorithm:

1. Similarity: Build s x s similarity matrix S using kernel
function x

2. Decomposition: § = QA’QT

3. Transform: X' = X(QA)x (N > k > d for some non-linear
functions)

4. Normalize: X' = X'\~ !

5. Anomaly score: Score(x;) V¢ € [N]

6. Out-of-sample similarity: Build (N —s) x s similarity matrix
Sp using the same kernel

7. Out-of-sample transform: X} = So(QA 1)«

8. Complete transform: [(QA)x ; So(QA™1)]"

g8

References

Aggarwal, Charu C (2017). An introduction to outlier analysis. Springer.

Candés, Emmanuel J et al. (2011). “Robust principal component
analysis?" In: Journal of the ACM (JACM) 58.3, pp. 1-37.

Golub, G.H. and C.F. Van Loan (2013). Matrix Computations. John
Hopkins University Press.

Netrapalli, Praneeth et al. (2014). “Non-convex robust PCA". In:
Advances in neural information processing systems 27.

	
	

	References

