
Anomaly Detection
Dimensionality reduction: PCA, robust PCA

Paul Irofti
Andrei Pătras, cu
Cristian Rusu

Computer Science Department

Faculty of Mathematics and Computer Science

University of Bucharest

Email: first.last@fmi.unibuc.ro



Outline

▶ eigenvalue and singular value decomposition
▶ Principal Component Analysis
▶ Robust PCA
▶ Matrix Factorization

The course references are Aggarwal 2017, Ch.3 with papers for
Robust PCA by Candès et al. 2011 and Netrapalli et al. 2014.
For a thorough recap of eigen and singular values see Golub and
Van Loan 2013.



Preliminaries



Eigenvalues and Eigenvalue Decomposition (EVD)

Given square matrix A ∈ Rn×n then its eigenvalues λ and
associated eigenvectors v follow:

Av = λv (1)

which can be obtained through (A − λIn)v = 0 or the factorization
of the polynomial det(A − λIn) = 0

There are n eigenvalues and eigenvectors, thus we can write the
eigenvalue decomposition (EVD):

AV = V Λ ⇐⇒ Λ = V −1AV (2)

Remark: For symmetric matrices A⊤ = A we have V −1 = V ⊤

such that A = V ΛV ⊤.



Eigenvalues and Eigenvalue Decomposition (EVD)

Given square matrix A ∈ Rn×n then its eigenvalues λ and
associated eigenvectors v follow:

Av = λv (1)

which can be obtained through (A − λIn)v = 0 or the factorization
of the polynomial det(A − λIn) = 0

There are n eigenvalues and eigenvectors, thus we can write the
eigenvalue decomposition (EVD):

AV = V Λ ⇐⇒ Λ = V −1AV (2)

Remark: For symmetric matrices A⊤ = A we have V −1 = V ⊤

such that A = V ΛV ⊤.



Eigenvalues and Eigenvalue Decomposition (EVD)

Given square matrix A ∈ Rn×n then its eigenvalues λ and
associated eigenvectors v follow:

Av = λv (1)

which can be obtained through (A − λIn)v = 0 or the factorization
of the polynomial det(A − λIn) = 0

There are n eigenvalues and eigenvectors, thus we can write the
eigenvalue decomposition (EVD):

AV = V Λ ⇐⇒ Λ = V −1AV (2)

Remark: For symmetric matrices A⊤ = A we have V −1 = V ⊤

such that A = V ΛV ⊤.



Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A ∈ Rn×m the singular values σ, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Av = σv ; A⊤u = σu (3)

There are min(n, m) singular values, n left singular vectors, and m
right singular vectors, thus we can write the singular value
decomposition (SVD):

A = UΣV ⊤ =
min{n,m}∑

i=1
σiuiv⊤

i (4)

Theorem: The optimal low-rank matrix L ∈ Rn×m with rank k
that approximates A is

∑k
i=1 σiuiv⊤

i .



Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A ∈ Rn×m the singular values σ, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Av = σv ; A⊤u = σu (3)

There are min(n, m) singular values, n left singular vectors, and m
right singular vectors, thus we can write the singular value
decomposition (SVD):

A = UΣV ⊤ =
min{n,m}∑

i=1
σiuiv⊤

i (4)

Theorem: The optimal low-rank matrix L ∈ Rn×m with rank k
that approximates A is

∑k
i=1 σiuiv⊤

i .



Singular Values and Singular Value Decomposition (SVD)

Given rectangular matrix A ∈ Rn×m the singular values σ, the
associated left-hand side singular vectors u, and associated
right-hand side singular vectors v

Av = σv ; A⊤u = σu (3)

There are min(n, m) singular values, n left singular vectors, and m
right singular vectors, thus we can write the singular value
decomposition (SVD):

A = UΣV ⊤ =
min{n,m}∑

i=1
σiuiv⊤

i (4)

Theorem: The optimal low-rank matrix L ∈ Rn×m with rank k
that approximates A is

∑k
i=1 σiuiv⊤

i .



Least Squares (LS)

Given data X ∈ RN×d , where d is the data dimension and N the
number of samples, the least-squares problem solves the following:

min
β

∥Xβ − y∥2
F (5)

▶ when N = d we have β⋆ = X−1y
▶ when N > d we have β⋆ = (XT X)−1XT y
▶ when N < d we have β⋆ = XT (XXT )−1y

See Lecture 2 for more details.



LS: line fit

Figure: LS fits 2D points on a line

Source: https://en.wikipedia.org/wiki/Linear_least_squares

https://en.wikipedia.org/wiki/Linear_least_squares


LS: projection

Figure: LS projects vectors on ImA



LS: remarks

Least-squares properties:
▶ finds d − 1 subspace or hyperplane
▶ the hyperplane is an optimum fit to data
▶ anomaly score: based on length on orthogonal direction

Generalization:
▶ what is the k < d subspace or hyperplane?
▶ what is the anomaly score then?
▶ what is an optimum fit on any k-dimensional subspace?



LS: remarks

Least-squares properties:
▶ finds d − 1 subspace or hyperplane
▶ the hyperplane is an optimum fit to data
▶ anomaly score: based on length on orthogonal direction

Generalization:
▶ what is the k < d subspace or hyperplane?
▶ what is the anomaly score then?
▶ what is an optimum fit on any k-dimensional subspace?



Principal Component Analysis



Principal Component Analysis (PCA)
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N (6)

such that Σ ∈ Rd×d where element Σij is the covariance between
data dimension i and j .

Properties:
▶ the covariance matrix is symmetric and positive definite
▶ the EVD of Σ = P∆P⊤

▶ ∆ is diagonal and contains the eigenvalues between λmax and
λmin

▶ P ∈ Rd×d represents the orthonormal eigenvectors of the
covariance corresponding to ∆

▶ the normal hyperplane to pmin ∈ P is the LS-hyperplane of
dimension k = d − 1



Principal Component Analysis (PCA)
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N (6)

such that Σ ∈ Rd×d where element Σij is the covariance between
data dimension i and j .

Properties:
▶ the covariance matrix is symmetric and positive definite

▶ the EVD of Σ = P∆P⊤

▶ ∆ is diagonal and contains the eigenvalues between λmax and
λmin

▶ P ∈ Rd×d represents the orthonormal eigenvectors of the
covariance corresponding to ∆

▶ the normal hyperplane to pmin ∈ P is the LS-hyperplane of
dimension k = d − 1



Principal Component Analysis (PCA)
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N (6)

such that Σ ∈ Rd×d where element Σij is the covariance between
data dimension i and j .

Properties:
▶ the covariance matrix is symmetric and positive definite
▶ the EVD of Σ = P∆P⊤

▶ ∆ is diagonal and contains the eigenvalues between λmax and
λmin

▶ P ∈ Rd×d represents the orthonormal eigenvectors of the
covariance corresponding to ∆

▶ the normal hyperplane to pmin ∈ P is the LS-hyperplane of
dimension k = d − 1



Principal Component Analysis (PCA)
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N (6)

such that Σ ∈ Rd×d where element Σij is the covariance between
data dimension i and j .

Properties:
▶ the covariance matrix is symmetric and positive definite
▶ the EVD of Σ = P∆P⊤

▶ ∆ is diagonal and contains the eigenvalues between λmax and
λmin

▶ P ∈ Rd×d represents the orthonormal eigenvectors of the
covariance corresponding to ∆

▶ the normal hyperplane to pmin ∈ P is the LS-hyperplane of
dimension k = d − 1



Principal Component Analysis (PCA)
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N (6)

such that Σ ∈ Rd×d where element Σij is the covariance between
data dimension i and j .

Properties:
▶ the covariance matrix is symmetric and positive definite
▶ the EVD of Σ = P∆P⊤

▶ ∆ is diagonal and contains the eigenvalues between λmax and
λmin

▶ P ∈ Rd×d represents the orthonormal eigenvectors of the
covariance corresponding to ∆

▶ the normal hyperplane to pmin ∈ P is the LS-hyperplane of
dimension k = d − 1



Principal Component Analysis (PCA)
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N (6)

such that Σ ∈ Rd×d where element Σij is the covariance between
data dimension i and j .

Properties:
▶ the covariance matrix is symmetric and positive definite
▶ the EVD of Σ = P∆P⊤

▶ ∆ is diagonal and contains the eigenvalues between λmax and
λmin

▶ P ∈ Rd×d represents the orthonormal eigenvectors of the
covariance corresponding to ∆

▶ the normal hyperplane to pmin ∈ P is the LS-hyperplane of
dimension k = d − 1



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.
This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation
▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?
▶ the subspace will be generated by the largest k eigenvectors

such that the residual is minimal
▶ anomalies are the data whose error is high in this new

subspace
▶ anomalies have a large normal component



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.

This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation
▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?
▶ the subspace will be generated by the largest k eigenvectors

such that the residual is minimal
▶ anomalies are the data whose error is high in this new

subspace
▶ anomalies have a large normal component



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.
This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation

▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?
▶ the subspace will be generated by the largest k eigenvectors

such that the residual is minimal
▶ anomalies are the data whose error is high in this new

subspace
▶ anomalies have a large normal component



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.
This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation
▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?

▶ the subspace will be generated by the largest k eigenvectors
such that the residual is minimal

▶ anomalies are the data whose error is high in this new
subspace

▶ anomalies have a large normal component



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.
This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation
▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?
▶ the subspace will be generated by the largest k eigenvectors

such that the residual is minimal

▶ anomalies are the data whose error is high in this new
subspace

▶ anomalies have a large normal component



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.
This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation
▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?
▶ the subspace will be generated by the largest k eigenvectors

such that the residual is minimal
▶ anomalies are the data whose error is high in this new

subspace

▶ anomalies have a large normal component



PCA as Generalized LS
PCA starts from the covariance matrix of the mean-centered data
matrix X ∈ RN×d

Σ = XT X
N = P∆P⊤ (7)

such that Σ ∈ Rd×d .

Remark: the normal hyperplane to pmin ∈ P is the LS-hyperplane
of dimension k = d − 1.
This implies that:
▶ the eigenvectors subspace corresponding to the largest d − 1

eigenvalues provides a good data approximation
▶ what about k = d − 2 or any k ∈ [d − 1] = {1, . . . , d − 1}?
▶ the subspace will be generated by the largest k eigenvectors

such that the residual is minimal
▶ anomalies are the data whose error is high in this new

subspace
▶ anomalies have a large normal component



Example: Principal Eigenvectors

Figure: Distribution along first k = 3 eigenvectors (Aggarwal 2017)



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors
▶ there is no covariance in this new subspace as the eigenvectors

are orthogonal
▶ the variance along each axis is the eigenvalue
▶ a small eigenvalue implies a low variance
▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors

▶ there is no covariance in this new subspace as the eigenvectors
are orthogonal

▶ the variance along each axis is the eigenvalue
▶ a small eigenvalue implies a low variance
▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors
▶ there is no covariance in this new subspace as the eigenvectors

are orthogonal

▶ the variance along each axis is the eigenvalue
▶ a small eigenvalue implies a low variance
▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors
▶ there is no covariance in this new subspace as the eigenvectors

are orthogonal
▶ the variance along each axis is the eigenvalue

▶ a small eigenvalue implies a low variance
▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors
▶ there is no covariance in this new subspace as the eigenvectors

are orthogonal
▶ the variance along each axis is the eigenvalue
▶ a small eigenvalue implies a low variance

▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors
▶ there is no covariance in this new subspace as the eigenvectors

are orthogonal
▶ the variance along each axis is the eigenvalue
▶ a small eigenvalue implies a low variance
▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



PCA as Generalized LS

Remark: the subspace will be generated by the largest k
eigenvectors such that the residual is minimal.

Implications:
▶ the new axis of the data representation are the k orthonormal

eigenvectors
▶ there is no covariance in this new subspace as the eigenvectors

are orthogonal
▶ the variance along each axis is the eigenvalue
▶ a small eigenvalue implies a low variance
▶ can we cancel axis with small eigenvalues? E.g. λ < 10−3

▶ not if we expect anomalies to have higher variance among low
variance axis



Example: Eigen Histogram

Figure: Eigenvalues magnitude and variance (Aggarwal 2017)



Example: Eigen Histogram Trimmed

Figure: Eigenvalues magnitude and variance after trimming (Aggarwal
2017)



PCA space
PCA starts from the EVD of the covariance matrix

Σ = XT X
N = P∆P⊤

such that Σ ∈ Rd×d .

Then the transformed data space becomes:

X ′ = XP (8)

where X ′ ∈ RN×d .

Using the entire space k = d has the following advantage:
▶ take small eigenvector pj
▶ we know that the entries x ′

ℓj do not vary much as λj is small
▶ outlier: if x ′

ij has a large deviation compared to other x ′
ℓj

entries



PCA space
PCA starts from the EVD of the covariance matrix

Σ = XT X
N = P∆P⊤

such that Σ ∈ Rd×d .

Then the transformed data space becomes:

X ′ = XP (8)

where X ′ ∈ RN×d .

Using the entire space k = d has the following advantage:
▶ take small eigenvector pj
▶ we know that the entries x ′

ℓj do not vary much as λj is small
▶ outlier: if x ′

ij has a large deviation compared to other x ′
ℓj

entries



PCA space
PCA starts from the EVD of the covariance matrix

Σ = XT X
N = P∆P⊤

such that Σ ∈ Rd×d .

Then the transformed data space becomes:

X ′ = XP (8)

where X ′ ∈ RN×d .

Using the entire space k = d has the following advantage:

▶ take small eigenvector pj
▶ we know that the entries x ′

ℓj do not vary much as λj is small
▶ outlier: if x ′

ij has a large deviation compared to other x ′
ℓj

entries



PCA space
PCA starts from the EVD of the covariance matrix

Σ = XT X
N = P∆P⊤

such that Σ ∈ Rd×d .

Then the transformed data space becomes:

X ′ = XP (8)

where X ′ ∈ RN×d .

Using the entire space k = d has the following advantage:
▶ take small eigenvector pj

▶ we know that the entries x ′
ℓj do not vary much as λj is small

▶ outlier: if x ′
ij has a large deviation compared to other x ′

ℓj
entries



PCA space
PCA starts from the EVD of the covariance matrix

Σ = XT X
N = P∆P⊤

such that Σ ∈ Rd×d .

Then the transformed data space becomes:

X ′ = XP (8)

where X ′ ∈ RN×d .

Using the entire space k = d has the following advantage:
▶ take small eigenvector pj
▶ we know that the entries x ′

ℓj do not vary much as λj is small

▶ outlier: if x ′
ij has a large deviation compared to other x ′

ℓj
entries



PCA space
PCA starts from the EVD of the covariance matrix

Σ = XT X
N = P∆P⊤

such that Σ ∈ Rd×d .

Then the transformed data space becomes:

X ′ = XP (8)

where X ′ ∈ RN×d .

Using the entire space k = d has the following advantage:
▶ take small eigenvector pj
▶ we know that the entries x ′

ℓj do not vary much as λj is small
▶ outlier: if x ′

ij has a large deviation compared to other x ′
ℓj

entries



PCA subspace

PCA starts from the EVD of Σ = XT X
N = P∆P⊤, then the

transformed data space becomes X ′ = XP where X ′ ∈ RN×d .

The approximation through trimming the smallest d − k
eigenvectors X ′ = XPk ∈ RN×k

∥X − XPk∥ (9)

will contain in each x ′
ij with j ∈ [k]

Hard outlier score: the residuals representing the distance to the
rank-k hyperplane described by XPk .

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.



PCA subspace

PCA starts from the EVD of Σ = XT X
N = P∆P⊤, then the

transformed data space becomes X ′ = XP where X ′ ∈ RN×d .

The approximation through trimming the smallest d − k
eigenvectors X ′ = XPk ∈ RN×k

∥X − XPk∥ (9)

will contain in each x ′
ij with j ∈ [k]

Hard outlier score: the residuals representing the distance to the
rank-k hyperplane described by XPk .

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.



PCA subspace

PCA starts from the EVD of Σ = XT X
N = P∆P⊤, then the

transformed data space becomes X ′ = XP where X ′ ∈ RN×d .

The approximation through trimming the smallest d − k
eigenvectors X ′ = XPk ∈ RN×k

∥X − XPk∥ (9)

will contain in each x ′
ij with j ∈ [k]

Hard outlier score: the residuals representing the distance to the
rank-k hyperplane described by XPk .

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.



PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Decompose the sum of squares of the d − k distances and
normalize by their corresponding eigenvalue:

Score(xℓ) =
d∑

j=k+1

∥∥∥xℓj − x⊤
ℓ pj

∥∥∥2

λj
(10)

Result: also reward large deviation along small variance.

Remark: both scores focus on representing data in a
low-dimensional space which induces parameter k: selecting the
dimensionality



PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Decompose the sum of squares of the d − k distances and
normalize by their corresponding eigenvalue:

Score(xℓ) =
d∑

j=k+1

∥∥∥xℓj − x⊤
ℓ pj

∥∥∥2

λj
(10)

Result: also reward large deviation along small variance.

Remark: both scores focus on representing data in a
low-dimensional space which induces parameter k: selecting the
dimensionality



PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Decompose the sum of squares of the d − k distances and
normalize by their corresponding eigenvalue:

Score(xℓ) =
d∑

j=k+1

∥∥∥xℓj − x⊤
ℓ pj

∥∥∥2

λj
(10)

Result: also reward large deviation along small variance.

Remark: both scores focus on representing data in a
low-dimensional space which induces parameter k: selecting the
dimensionality



PCA: Soft Score

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Decompose the sum of squares of the d − k distances and
normalize by their corresponding eigenvalue:

Score(xℓ) =
d∑

j=k+1

∥∥∥xℓj − x⊤
ℓ pj

∥∥∥2

λj
(10)

Result: also reward large deviation along small variance.

Remark: both scores focus on representing data in a
low-dimensional space which induces parameter k: selecting the
dimensionality



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP
3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP
3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:

1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP
3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP
3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP

3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP
3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: Mahalanobis Connection

Soft outlier score: normalize the residuals according to their
corresponding variance along the d − k distances.

Mahalanobis performs the normalization across all d directions

Score(xℓ) =
d∑

j=1

∥∥∥(xℓ − µ)⊤pj
∥∥∥2

λj
(11)

where µ ∈ Rd is the data centroid (the mean vector along the
data dimension).

Algorithm:
1. EVD: Σ = P∆P⊤

2. Transform: X ′ = XP
3. Normalize: X ′ = X ′∆−1

4. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



Robust PCA



PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:
1. PCA: compute Σ = P∆P⊤

2. Anomaly score: compute associated scores Score(xℓ) ∀ℓ ∈ [N]
3. Prune: remove obvious outliers from the dataset
4. Reconstruct: compute new covariance matrix
5. Goto step 1



PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:

1. PCA: compute Σ = P∆P⊤

2. Anomaly score: compute associated scores Score(xℓ) ∀ℓ ∈ [N]
3. Prune: remove obvious outliers from the dataset
4. Reconstruct: compute new covariance matrix
5. Goto step 1



PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:
1. PCA: compute Σ = P∆P⊤

2. Anomaly score: compute associated scores Score(xℓ) ∀ℓ ∈ [N]

3. Prune: remove obvious outliers from the dataset
4. Reconstruct: compute new covariance matrix
5. Goto step 1



PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:
1. PCA: compute Σ = P∆P⊤

2. Anomaly score: compute associated scores Score(xℓ) ∀ℓ ∈ [N]
3. Prune: remove obvious outliers from the dataset

4. Reconstruct: compute new covariance matrix
5. Goto step 1



PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:
1. PCA: compute Σ = P∆P⊤

2. Anomaly score: compute associated scores Score(xℓ) ∀ℓ ∈ [N]
3. Prune: remove obvious outliers from the dataset
4. Reconstruct: compute new covariance matrix

5. Goto step 1



PCA Perturbations

The lack of data covariance in the eigenspace adds robustness to
noise.

Robust PCA through iterative pruning:
1. PCA: compute Σ = P∆P⊤

2. Anomaly score: compute associated scores Score(xℓ) ∀ℓ ∈ [N]
3. Prune: remove obvious outliers from the dataset
4. Reconstruct: compute new covariance matrix
5. Goto step 1



Example: Outlier Perturbation

Figure: Sensitivity to outliers (Aggarwal 2017)



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0

▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0

▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds

▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds

▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold

▶ repeat for each fold
▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold

▶ alternative: use sub-sampling



PCA Strengthening

Normalization: original dimensions scales can very widely –
normalize to unit variance.

Regularization:
▶ zero variance among some dimensions implies λ = 0
▶ regularize the covariance matrix Σ + αId with α > 0
▶ shifts all eigenvalues by the constant value α

▶ equivalent to adding noise with variance α

Score through cross-validation:
▶ split into m-folds
▶ perform PCA on m − 1 folds
▶ score the data in the mth-fold
▶ repeat for each fold
▶ alternative: use sub-sampling



Robust PCA

Treat measurement matrix as the super-position of a low-rank
matrix with a sparse noise matrix X = L0 + S0, then recovering L0
and S0 involves solving the following optimization problem

arg min
L,S

ρ(L) + λ ∥S∥0 s.t. ∥X − L − S∥2
F = 0 (12)

where ρ(L) is the rank function and ∥·∥0 is the ℓ0-norm counting
the number of non-zeros.

Candès et al. 2011 show that the convex relaxation of the above
can recover L0 and S0 under mild assumpitons

arg min
L,S

∥L∥⋆ + λ ∥S∥1 s.t. ∥X − L − S∥2
F = 0 (13)

where ∥·∥⋆ is the nuclear norm summing the singular values.



Robust PCA

Treat measurement matrix as the super-position of a low-rank
matrix with a sparse noise matrix X = L0 + S0, then recovering L0
and S0 involves solving the following optimization problem

arg min
L,S

ρ(L) + λ ∥S∥0 s.t. ∥X − L − S∥2
F = 0 (12)

where ρ(L) is the rank function and ∥·∥0 is the ℓ0-norm counting
the number of non-zeros.

Candès et al. 2011 show that the convex relaxation of the above
can recover L0 and S0 under mild assumpitons

arg min
L,S

∥L∥⋆ + λ ∥S∥1 s.t. ∥X − L − S∥2
F = 0 (13)

where ∥·∥⋆ is the nuclear norm summing the singular values.



Escalator Example: PCA versus Robust PCA

Figure: Background separation: truth, PCA and two RPCA
implementations (Netrapalli et al. 2014)



Restaurant Example: PCA versus Robust PCA

Figure: Background separation: truth, PCA and two RPCA
implementations (Netrapalli et al. 2014)



Nonlinear PCA



PCA: sample space versus feature space

What if we used S = XX⊤ ∈ RN×N instead of Σ?

The EVD of S becomes:

S = XX⊤ = QΛ2Q⊤ (14)

where Q ∈ RN×N are the orthonormal eigenvectors such that only
the first d correspond to non-zero eigenvalues.

The transform in the sample space is:

X ′ = X(QΛ)d (15)

where we can easily see that [X ′ O] = XQΛ = [X(QΛ)d O].



PCA: sample space versus feature space

What if we used S = XX⊤ ∈ RN×N instead of Σ?

The EVD of S becomes:

S = XX⊤ = QΛ2Q⊤ (14)

where Q ∈ RN×N are the orthonormal eigenvectors such that only
the first d correspond to non-zero eigenvalues.

The transform in the sample space is:

X ′ = X(QΛ)d (15)

where we can easily see that [X ′ O] = XQΛ = [X(QΛ)d O].



PCA: sample space versus feature space

What if we used S = XX⊤ ∈ RN×N instead of Σ?

The EVD of S becomes:

S = XX⊤ = QΛ2Q⊤ (14)

where Q ∈ RN×N are the orthonormal eigenvectors such that only
the first d correspond to non-zero eigenvalues.

The transform in the sample space is:

X ′ = X(QΛ)d (15)

where we can easily see that [X ′ O] = XQΛ = [X(QΛ)d O].



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:

1. Similarity: Build N × N similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



PCA: sample space uses a similarity matrix
Remark: S = XX⊤ ∈ RN×N has sij as the dot-product between xi
and xj thus acting as a similarity matrix.

Remark: the transform S = QΛ2Q⊤ is actually the SVD
transform.

Remark: We can use a different similarity matrix instead of the
dot-product; we can use a kernel function and employ the kernel
trick!

Algorithm:
1. Similarity: Build N × N similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]



Example: Kernel Space

Figure: Sample space to kernel space (Aggarwal 2017)



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).

Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.

Algorithm:
1. Similarity: Build s × s similarity matrix S using kernel

function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



Nonlinear PCA: Dealing with large sample spaces
Remark: Computing S = QΛ2Q⊤ ∈ RN×N for large N can be
prohibitive (e.g. N = 100, 000).
Solution: One can apply sub-sampling using s samples instead of
N such that k < s < N thus obtaining an s × s similarity matrix.
Algorithm:

1. Similarity: Build s × s similarity matrix S using kernel
function κ

2. Decomposition: S = QΛ2Q⊤

3. Transform: X ′ = X(QΛ)k (N > k > d for some non-linear
functions)

4. Normalize: X ′ = X ′Λ−1

5. Anomaly score: Score(x ′
ℓ) ∀ℓ ∈ [N]

6. Out-of-sample similarity: Build (N − s) × s similarity matrix
S0 using the same kernel

7. Out-of-sample transform: X ′
0 = S0(QΛ−1)k

8. Complete transform: [(QΛ)k ; S0(QΛ−1)k ]⊤



References

Aggarwal, Charu C (2017). An introduction to outlier analysis. Springer.
Candès, Emmanuel J et al. (2011). “Robust principal component

analysis?” In: Journal of the ACM (JACM) 58.3, pp. 1–37.
Golub, G.H. and C.F. Van Loan (2013). Matrix Computations. John

Hopkins University Press.
Netrapalli, Praneeth et al. (2014). “Non-convex robust PCA”. In:

Advances in neural information processing systems 27.


	
	

	References

