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Outline

▶ Autoencoder architecture
▶ Convolutional autoencoders (CAE)
▶ Sparse autoencoder (SAE)
▶ Variational autoencoders (VAE)
▶ Connections with other methods

The course main references are Kramer 1991 and Dumoulin and
Visin 2016.
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Autoencoders

Given dataset X ∈ Rm×N , an autencoder is composed of three
essential components

▶ encoder E : Rm → Rs such that z = E (x) ∈ Rs where s ≪ m
▶ the subspace, latent space, embedding Z ∈ Rs

▶ decoder D : Rs → Rm such that x ′ = D(z) ∈ Rm

whose aim is to find the true subspace Z for X such that
x ≈ D(E (x)), ∀x ∈ X .

Remark: this setting can be solved by any dimensionality
reduction method (ex. EVD, SVD, PCA, R-PCA etc.).
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AE: Optimization Problem

In the context of Neural Networks, we want to optimize the
weights ω of the activation functions.

Our loss becomes

{ω⋆
E , ω⋆

D} = arg min
ωE ,ωD

∥X − DωD (EωE (X ))∥ (1)

where the ℓ2 penalty can be replaced by other distance functions.

Remark: anomalies are the data whose reconstruction error
∥x − x ′∥ is high due to the new subspace.
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AE: Architecture

Figure: Autoencoder architecture proposed in (Kramer 1991)



Convolutional Autoencoders



Convolutional Autoencoders (CAE)

Convolutional Autoencoders use convolutional and pool layers in
the neural network architecture.

Figure: CAE for anomaly detection in videos (Ribeiro, Lazzaretti, and
Lopes 2018)



Convolution Padding

Source: https://en.wikipedia.org/wiki/Pooling_layer

https://en.wikipedia.org/wiki/Pooling_layer


Convolution Max Pooling

Source: https://en.wikipedia.org/wiki/Pooling_layer

https://en.wikipedia.org/wiki/Pooling_layer


CAE: Average Pooling

Figure: CAE with average pooling (Dumoulin and Visin 2016)



CAE: Max Pooling

Figure: CAE with max pooling (Dumoulin and Visin 2016)



CAE: Deconvolution is Transposed Convolution

Figure: CAE with transposed convolution (Dumoulin and Visin 2016)

Remark: this includes a convolution and upscaling operation that
are sometimes termed “deconv” and “unpool”.



CAE: Transposed Convolution with Stride

Figure: CAE transposed convolution with stride (Dumoulin and Visin
2016)



Sparse Autoencoders



Sparse Autoencoders (SAE)
Sparse autoencoders enforce sparsity in the mid-layer
representations thus allowing subspaces of size m̃ > m but with at
most k < m < m̃ non-zeros.

Figure: SAE with overcomplete layer (Dutta et al. 2018)



SAE: Hard-Thresholding with ℓ0

k-Spare Autoencoders Makhzani and Frey 2013 compute the
activation function in each node and then select the k largest
values

x (ℓ) = maxk φωℓ
(x (ℓ−1)) (2)

where maxk is the function selecting the top-k values in x whose
associated support is suppk.



SAE: Regularization with ℓ1

Sparse regularized autoencoders add regularization to the AE
problem

arg min
ωE ,ωD

∥X − DωD (EωE (X ))∥ + λϕ(X ) (3)

where ϕ(X ) is a sparse inducing penalty usually applied at each
layer.

The ℓ1 convex norm is a popular candidate for ϕ(·) such that at
each layer we have

ϕ(X ) =
∑

ℓ

ωℓ

∥∥∥φ(X ℓ−1)
∥∥∥

1
(4)
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Variational Autoencoder (VAE)

Variational autoencoders (Kingma 2013) model input vector x as a
mixture of (Gaussian) distributions.

Source: https://en.wikipedia.org/wiki/Variational_autoencoder

https://en.wikipedia.org/wiki/Variational_autoencoder


AE: Subspace Connections

The resulting autoencoder subspace representations z or final
representations x ′ are coupled with existing methods to enhance
anomaly detection performance.



DeepSVDD: AE and SVDD

Given dataset X and autoencoder (E , D) with weights ω,
DeepSVDD (Ruff et al. 2018) formulates the soft-boundary as

min
R,ω

R2+ 1
νN

N∑
i=1

max{0, ∥D(E (X )) − c∥2−R2}+ λ

2
∑

ℓ

∥∥∥ωℓ
∥∥∥2

F
(5)

For unbalanced datasets, where we have more normal data than
anomalies, the authors propose a simplified one-class objective

min
ω

1
N

N∑
i=1

∥D(E (X )) − c∥2 + λ

2
∑

ℓ

∥∥∥ωℓ
∥∥∥2

F
(6)
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DeepOCSVM: AE and OC-SVM

Figure: DeepOCSVM architecture with Fourier Features (Nguyen and
Vien 2019)

The DeepOCSVM loss is

α ∥X − D(E (X ))∥+ 1
2 ∥w∥2−ρ+ 1

νN

N∑
i=1

max{0, ρ−w⊤z(xi)} (7)

where z(·) is the Random Fourier Features (RFF) function.
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