
Anomaly Detection
Applications: network throughput analysis

Paul Irofti
Andrei Pătras, cu
Cristian Rusu

Computer Science Department

Faculty of Mathematics and Computer Science

University of Bucharest

Email: first.last@fmi.unibuc.ro



Outline

▶ Preliminaries
▶ Ensembles and voting methods
▶ Abnormal traffic analysis
▶ Netalert: network throughput analysis
▶ DeDDoS: anti-DDoS solution (on-going)

The course main reference is Irofti, Pătras, cu, and Hîji 2022.



Preliminaries



Algorithms Overview

Models use ensembles consisting of the following algorithms

▶ Isolation Forest (IF)
▶ k-Nearest Neighbors (k-NN)
▶ Lightweight Online Detector of Anomalies (LODA)
▶ Local Outlier Factor (LOF)
▶ One-Class SVM (OC-SVM)
▶ Autoencoder (AE)

We will briefly discuss each and their parameters in existing
implementations such as Graphomaly, PyOD, and Prophet.



Isolation Forest

▶ ensemble method consisting of multiple iTrees
▶ each iTree at node n selects a random feature f and a split

value v
▶ signals are categorized at node n on the left hand side or the

right hand side based on their f attribute:
x(f ) > v ∨ x(f ) < v?

▶ the tree leafs represent a single signal
▶ the longer the path towards the leaf the harder it is to isolate

the signal
▶ we usually use around 100 iTrees in the ensemble

Q: How do we mark a signal as anomalous?

A: Short paths indicate that the signal is far from the majority of
points. It is anomalous!



Isolation Forest

▶ ensemble method consisting of multiple iTrees
▶ each iTree at node n selects a random feature f and a split

value v
▶ signals are categorized at node n on the left hand side or the

right hand side based on their f attribute:
x(f ) > v ∨ x(f ) < v?

▶ the tree leafs represent a single signal
▶ the longer the path towards the leaf the harder it is to isolate

the signal
▶ we usually use around 100 iTrees in the ensemble

Q: How do we mark a signal as anomalous?

A: Short paths indicate that the signal is far from the majority of
points. It is anomalous!



Example: Isolation Forest

Source: https://en.wikipedia.org/wiki/Isolation_forest

https://en.wikipedia.org/wiki/Isolation_forest


Isolation Forest Parameters

▶ contamination: percentage of outliers
▶ n_estimators: number of iTrees
▶ max_samples: number of samples from the training set per

iTree
▶ max_features: number of features from the training set per

iTree
▶ bootstrap: sampling with replacement?
▶ n_jobs: parallelization level



k-Nearest Neighbors Parameters

For each signal perform the following:
▶ choose the k closest signals to the current signal
▶ ’closest’ is decided on a distance metric (e.g. euclidian, ℓ1, ℓε,

minkowski)
▶ distance to the k-nearest neighbor estimates the isolation

score of the current signal
▶ the larger the distance to its neighbors the highest its outlier

score
▶ score can be computed based on neighbors distance in various

way: maximum, mean, median



k-Nearest Neighbors Parameters

▶ contamination: percentage of outliers
▶ n_neighbors: k value
▶ method: outlier score based on

▶ largest: use distance to kth neighbor
▶ mean: use the average of all k neighbors
▶ median: use the median of distance

▶ metric: how to compute the distance between two sigals



Lightweight online detector of anomalies

▶ ensemble method based on a set of subspaces (usually if
x ∈ Rn then subspace is

√
n)

▶ generate sparse subspaces based on signal size
▶ choose random coefficients for the resulting vectors
▶ project each signal on the generated subspaces
▶ generate 1D histograms for each projection based on all the

projected signals
▶ use each histogram to associate a probability for each signal
▶ for every signal use the probabilities resulted from each

histogram to generate the anomaly score
▶ the lower the probability (the less frequent a bin is) the more

chances the signal is an outlier
▶ the more histograms label the signal as an outlier, the higher

the outlier score



Example: LODA

Source: https://anlearn.readthedocs.io/en/latest/loda.html

https://anlearn.readthedocs.io/en/latest/loda.html


LODA Parameters

▶ contamination: percentage of outliers
▶ n_random_cuts: number of subspaces in the ensemble
▶ n_bins: number of bins in the histograms



Local Outlier Factor (LOF)

▶ similar to k-NN
▶ estimates the local density of a signal based on its k nearest

neighbours
▶ next it computes the local density of its selected neighbors
▶ the distance to its kth neighbor creates a radius, everything

within that radius is considered the signal’s neighbor
▶ if the neighbors have a higher density than the current signal,

then the signal is isolated
▶ based on that LOF builds the outlier score (anomalous if

LOF(x) > 1)



Example: LOF local density

Source: https://en.wikipedia.org/wiki/Local_outlier_factor

https://en.wikipedia.org/wiki/Local_outlier_factor


Example: LOF anomaly detection

Source: https://en.wikipedia.org/wiki/Local_outlier_factor

https://en.wikipedia.org/wiki/Local_outlier_factor


LOF Parameters

▶ contamination: percentage of outliers
▶ n_neighbors: k value
▶ algorithm: method used to obtain the k nearest neighbors;

how to inflate the hypersphere?
▶ leaf_size: tied to the algorithm, helps reduce complexity
▶ metric: how to compute the distance between two sigals
▶ n_jobs: parallelization level



Autoencoder: Architecture

Neural network architecture with an imposed two part structure.
Goal: Obtain a subspace where most of the signals lie.

Encoder.
▶ starts with a layer of neurons of the same size as the signal

dimension
▶ next layers reduce the number of neurons
▶ last layer has the smallest number of neurons in the network;

also called the latent space
Decoder.
▶ start with a layer connected to the latent space; this new layer

has more neurons
▶ next layers are always larger than the last
▶ last layer has the same size as the original signal’s dimension



Autoencoder: Properties

▶ usually not very deep, a few hidden layers suffice
▶ most common activation function is ReLU
▶ the last layer produces a reconstructed signal
▶ outiler score is based on the representation error between the

original and reconstructed signal
▶ normal signals should have a small error due to the latent

space (subspace) that was trained for them
▶ contamination rate dictates the anomaly percentile



Example: Autoencoder

Source: https://www.mygreatlearning.com/blog/autoencoder/

https://www.mygreatlearning.com/blog/autoencoder/


AE Parameters

▶ contamination: percentage of outliers
▶ activation_function
▶ l2_regularizer: control weights growth during

backpropagation
▶ encoder_neurons: vector where each element represents an

encoder layer and its value the number of neurons in that layer
▶ decoder_neurons: same as above for the decoder
▶ optimizer: backpropagation algorithm
▶ learning_rate: gradient decent step
▶ epochs: number of times to go through the training set
▶ loss: how to measure the approximation quality



Ensembles and Voting Methods
In practice we create ensembles of the algorithm listed above in its
models.
Ensembles.
▶ each algorithm labels the outlier in the dataset
▶ a label is like a verdict, it is a binary value
▶ every outlier has an outlier score (see above)
▶ the outlier score represents a confidence score of the verdict

Voting.
▶ hard voting takes a majority vote on the resulting labels from

the ensemble algorithms
▶ soft voting uses an algorithm to combine the outlier scores

and then produces the final verdict based on the sums of the
resulting probabilities

Q: Why do we need a combine algorithm?
A: We have distances, densities and probabilities as outlier scores.



Ensembles and Voting Methods
In practice we create ensembles of the algorithm listed above in its
models.
Ensembles.
▶ each algorithm labels the outlier in the dataset
▶ a label is like a verdict, it is a binary value
▶ every outlier has an outlier score (see above)
▶ the outlier score represents a confidence score of the verdict

Voting.
▶ hard voting takes a majority vote on the resulting labels from

the ensemble algorithms
▶ soft voting uses an algorithm to combine the outlier scores

and then produces the final verdict based on the sums of the
resulting probabilities

Q: Why do we need a combine algorithm?

A: We have distances, densities and probabilities as outlier scores.



Ensembles and Voting Methods
In practice we create ensembles of the algorithm listed above in its
models.
Ensembles.
▶ each algorithm labels the outlier in the dataset
▶ a label is like a verdict, it is a binary value
▶ every outlier has an outlier score (see above)
▶ the outlier score represents a confidence score of the verdict

Voting.
▶ hard voting takes a majority vote on the resulting labels from

the ensemble algorithms
▶ soft voting uses an algorithm to combine the outlier scores

and then produces the final verdict based on the sums of the
resulting probabilities

Q: Why do we need a combine algorithm?
A: We have distances, densities and probabilities as outlier scores.



Netflow

▶ flow_id
▶ src_ip
▶ src_port
▶ dst_ip
▶ dst_port
▶ protocol
▶ timestamp
▶ Duration
▶ PacketsCount
▶ FwdPacketsCount
▶ BwdPacketsCount
▶ TotalPayloadBytes

▶ FwdTotalPayloadBytes
▶ BwdTotalPayloadBytes
▶ PayloadBytesMax
▶ PayloadBytesMin
▶ PayloadBytesMean
▶ PayloadBytesStd
▶ PayloadBytesVariance
▶ PayloadBytesMedian
▶ PayloadBytesSkewness
▶ PayloadBytesCov
▶ PayloadBytesMode
▶ . . .

https://github.com/ahlashkari/NTLFlowLyzer

https://github.com/ahlashkari/NTLFlowLyzer


Unsupervised Abnormal Traffic
Detection through Topological Flow

Analysis

Based on work from Irofti, Pătras, cu, and Hîji 2022



Motivation

NetAlert: Automatic tools for detecting abnormal behavior in
computer networks.
▶ unsupervised anomaly detection
▶ using only layer-3 information (no payload!)
▶ main goal is detecting abnormal traffic
▶ secondary goals are related to specific targeted attacks
▶ builds on open-source Graphomaly library resulted from PED

research project (available on pypi)
▶ https://cs.unibuc.ro/~pirofti/netalert.html
▶ work supported by grant PN-III-P2-2.1-SOL-2021-0036

https://cs.unibuc.ro/~pirofti/netalert.html


Network Topology

Main steps of our method reduce to
▶ embedding of the network flows into a directed graph
▶ extraction of several statistical node features from the graph

and expand the original feature set.
▶ fixed IPs within a network mapped into integers
▶ graph G = {V , E , W } – V computers, E connections, W

weights
Result: X ∈ Rm×N network data, with m features and N flows.
For two IPs let

(i , j) ≡ (source_IP, destination_IP)

then (i , j) ∈ E if there exists a flow between IPs mappings (i , j).
The value wij on ith column and jth line in matrix W defines some
summable feature (e.g. packets transmitted)



Flow to Graph

Conversion of data from flow format into graph format:
▶ source, destination addresses (i , j)
▶ particular attributes which represents the weight wij .

Remark: Attribute may be any real-valued summable feature in
the original data X .

Multi-graph: Multiple flows occur multiple times between the
same pair of nodes:
▶ we get multiple weights w t

ij , where t is time counter.
▶ we sum over t these weights in order to obtain a final weight

wij =
∑

t
w t

ij

.



Graph to Features

1) Fetch Egonets
1’) Perform Random Walks
2) For any i ∈ [n], extract p features of the egonet/random walk

instance Ei . Denote zi ∈ Rp the vector of these features.
3) Output matrix Z ∈ Rp×n, as the array containing all

egonet/random walk features.

Perform a single step of the two alternatives 1) or 1′).

Notice that the random-walk Ei computed in scenario 1′) is not
limited to the egonet neighborhood of node i .



Egonets and Random Walks

Egonets:
1) Extract all the egonets and stack them into E, where each

Ei ∈ E is the egonet associated to node i ∈ V .

Random Walks:
1’) Extract a random-walk of size ℓ for each node.

1’1) Denote Ei ∈ E as the random-walk associated to node i ∈ V .
1’2) Starting at node i , for at most ℓ iterations, a neighbor of the

current node is randomly chosen and its associated edge is
added to Ei .

1’3) Chosen node becomes the current node, reiterate
1’4) If either the node i or the walk length ℓ are reached, stop



Graph Features

The statistical features computed in step 2), after step 1):
▶ dimension of egonet,
▶ the number of out-links,
▶ the number of in-links.

For scenario 1′) they include:
▶ the weight on the first leg of the walk
▶ the weight transferred all the way from the first node to the

last one of the walk.

The full description of all features can be found in Graphomaly.



Egonets

Figure: Graphomaly Egonet example (Dumitrescu, Băltoiu, and Budulan
2022)



Feature Expansion

We expand the original data by adding the columns of Z as
prolongation of columns in X .

For a given flow xt ∈ X from source i to destination j , we form:

x̂t =


xt

zi

zj

 ∈ Rm+2p.

The matrix X̂ containing columns x̂t for t ∈ [N] is the output.



Experiments

In our simulations we use:
▶ One-Class SVM (OC-SVM)
▶ Local Outlier Factor (LOF)
▶ Isolation-Forest (IForest)
▶ an Ensemble that includes the above.

In the implementation of the Ensemble we use voting methods.

Preliminary tests with autonecoder and variatonal autoencoder
architectures that have not yet shown promising results.

The experiments were performed using public datasets
CIC-IDS2017 and UNSW-NB15.



Obtaining Parameters

Assumption: We assume access to a small initial dataset
depicting the normal state of the network through their recorded
layer-3 traffic.

Normality: In our experiments, we extract the first 1% of samples
from each dataset and assume that this is known data with known
labels.

Model parameters: We perform grid-search for both databases
when using the standard, graph and mixed features.



Balanced Accuracy Results
Prediction results for the models trained on 1% on UNSW-NB15.

0.0

0.5

1.0
OCSVM LOF IFORREST

ST
AN

DA
RD

ENSEMBLE

0.0

0.5

1.0

GR
AP

H

10 30 50 70 10
0

0.0

0.5

1.0

10 30 50 70 10
0 10 30 50 70 10
0 10 30 50 70 10
0

M
IX

ED

Percentage of test samples used from the available time series

TP
R/

TN
R 

ac
cu

ra
cy

 a
nd

 sc
al

ed
 F

P 
sa

m
pl

es
TPR TNR FP



Retraining on more Data

Testing: We use the obtained parameters to train the models on
the next 10% of available data from the time-series.

Remark: We see a clear degradation in the balanced accuracy
compared to the tuned experiments: larger dataset, new attacks,
model parameters are not optimal.

Dataset Method (m,N,outliers) OC-SVM LOF IForest Ensemble

CIC-
IDS2017

standard (87, 45883, 928) 0.3724 242.30s 0.4811 529.12s 0.4132 0.35s 0.4996

graph (48, 1999, 1) 0.4997 0.43s 0.4705 0.07s 0.4750 0.06s 0.4874

mixed (183, 45883, 928) 0.5955 601.00s 0.4805 86.42s 0.4222 0.32s 0.4821

UNSW-
NB15

standard (59, 44004, 5148) 0.6542 358.21s 0.5096 147.76s 0.7259 5.09s 0.5474

graph (48, 46, 4) 0.7829 0.01s 0.6382 0.01s 0.3289 0.03s 0.5119

mixed (155, 44004, 5148) 0.6619 579.19s 0.5775 750.70s 0.7926 0.82s 0.9103



Using the Ensemble

Dataset Attack Detected Total

standard

Exploits 163 2088

DoS 79 1014

Fuzzers 29 516

Worms 0 7

Backdoor 11 138

Analysis 9 123

Shellcode 2 52

Reconnaissance 31 548

Generic 256 662

mixed

Exploits 1933 2088

DoS 911 1014

Fuzzers 502 516

Worms 7 7

Backdoor 124 138

Analysis 109 123

Shellcode 47 52

Reconnaissance 506 548

Generic 644 662



Netalert

Based on the Solut, ii 2021 Grant PN-III-P2-2.1-SOL-2021-0036
https://cs.unibuc.ro/~pirofti/netalert.html

https://cs.unibuc.ro/~pirofti/netalert.html


Netalert: Goals

Goal: NetAlert aims to create a hardware-software sensor solution
for detecting anomalies in computer networks based on the
monitoring and analysis of data packets.

The network-mounted sensor will provide real-time alerts on
abnormal traffic behaviors using two complementary approaches:

(i) static analysis based on rules and behavioral patterns
(ii) machine learning (ML) analysis without prior expert

knowledge



Netalert: Recorded Traffic

Netalert records, monitors and analyzes traffic:
▶ network traffic to the Internet
▶ network traffic passing through Proxy
▶ internal network traffic
▶ TCP, UDP, ICMP traffic
▶ network traffic associated with DNS and DHCP
▶ Domain Controller (Kerberos) network traffic
▶ SMTP network traffic
▶ Samba (SMB) network traffic
▶ TOR communications



Netalert: Detected Behaviors

▶ transferred files and data
internally and externally

▶ DNS requests and DNS
traffic anomalies

▶ device operating system
▶ proxy server identification
▶ cryptocurrency mining

activity
▶ applications specific to APT

attacks
▶ communications with the

TOR network
▶ dynamic DNS
▶ port and network scanning

▶ abnormal behavior per
device

▶ loss of connections or
packets

▶ Kerberos authentications
▶ lateral movement
▶ bruteforce attacks
▶ Heartbleed attacks
▶ invalid SSL certificates
▶ port hijacking
▶ connecting non-standard

ports



Netalert: Architecture

▶ Network traffic
collection
(APP_COLLECT)

▶ Machine Learning and
Alerting Service
(APP_ML)

▶ Web Application for
Admin and Agents
(APP_WEB)

▶ Database
(NetAlert DB)



Software Modules and Hardware Architecture

SRV1 contains:
▶ 2xAMD EPYC 7502 2x32

cores or 2x2x32 threads
▶ 8xNVIDIA RTX A6000,

10.752 cores, 48GB mem
▶ 512GB system memory
▶ 1.92TB NVMe secondary

memory
▶ 2x network cards

SRV2 contains:
▶ 2xIntel Xeon Platinum

8200 2x24 cores or 2x2x24
threads

▶ 512GB system memory
▶ 2x960GB secondary

memory
▶ 2x10/100/1000 and

2x1Gbe/10Gbe SFP+



Netalert Models

Netalert uses the following behavior models:

▶ TCP: a model for each device and one for the entire network
▶ UDP: a model for each device and one for the entire network
▶ kerberos authentication (brute force)
▶ lateral movement
▶ network scan
▶ DNS
▶ SMTP

Technologies used: Graphomaly, Prophet, PyOD



TCP

Network.
▶ trained on TCP traffic from the entire network
▶ ensemble based on IF, KNN, LODA, LOF, OCSVM, AE
▶ soft voting
▶ no graph preprocessing (egonets, random walks)

Device.
▶ trained on device TCP traffic for each network device
▶ based on MAC address list
▶ same configuration as for the network model



UDP

Network.
▶ trained on UDP traffic from the entire network
▶ ensemble based on IF, KNN, LODA, LOF, OCSVM, AE
▶ soft voting
▶ no graph preprocessing (egonets, random walks)

Device.
▶ trained on device UDP traffic for each network device
▶ based on MAC address list
▶ same configuration as for the network model

Autoencoder is smaller than for the TCP models.



Brute Force

▶ trained on sliding-window traffic
▶ ensemble based on IF, KNN, LODA, LOF, OCSVM
▶ no AE, small dataset
▶ soft voting
▶ graph preprocessing: egonets and random walks
▶ trained only on graph features (not mixed)



Lateral Movement

▶ trained on sliding-window network traffic
▶ small models available also per device
▶ detection based on MAC and IP
▶ ensemble based on IF, KNN, LODA, LOF, OCSVM
▶ no AE, small dataset
▶ soft voting
▶ graph preprocessing: egonets and random walks
▶ trained only on graph features (not mixed)



Network Scan

▶ trained on sliding-window network traffic
▶ looking for ICMP traffic
▶ taking into account TCP RST and SYN traffic
▶ also the number of packets in relation with these flags
▶ detection based on IP
▶ ensemble based on IF, KNN, LODA, LOF, OCSVM
▶ no AE, small dataset
▶ soft voting



DNS and SMTP

Two models with similar setup each handling its designated traffic.

▶ uses the Prophet forecasting model from Facebook
▶ adapted for anomaly detection
▶ scans and identifies time series for anomalous peaks
▶ sliding-window with large daily and weekly seasonality (can

also do yearly)
▶ based on historical behavior statistics such as

▶ maximum different IPs and MACs
▶ minimum successful requests and percentages
▶ average TTL
▶ average content and header size
▶ targeted MACs count and their header and content size

together with the average TTL



DeDDoS

On-going Solut, ii 2024 Grant PN-IV-P6-6.3-SOL-2024-2-0197
https://cs.unibuc.ro/~pirofti/deddos.html

https://cs.unibuc.ro/~pirofti/deddos.html


References

Dumitrescu, Bogdan, Andra Băltoiu, and Ştefania Budulan (2022).
“Anomaly detection in graphs of bank transactions for anti money
laundering applications”. In: IEEE Access 10, pp. 47699–47714.

Irofti, Paul, Andrei Pătras, cu, and Andrei Hîji (2022). “Unsupervised
abnormal traffic detection through topological flow analysis”. In:
2022 14th International Conference on Communications (COMM).
IEEE, pp. 1–6.


	
	

	References

