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Intro to graphs

Graphs G = (V ,E) have the ability to model relations in:

Computer Networks

Financial Networks

Social Networks

etc.

Problem
Given the graph topology (and attributes), detect unusual connectivity or
other abnormal structures.
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Computer Networks

V is (possibly) the set of IP adresses. E is the set of connections (flows)
between IPs. Anomalies are intrusions or attacks such as:

port-scan: a particular node has a very high out-degree.

DDoS: many nodes have connections towards the same destination.
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Computer Networks

V is (possibly) the set of IP adresses. E is the set of connections (flows)
between IPs. Anomalies are intrusions or attacks such as:

port-scan: a particular node has a very high out-degree.

DDoS: many nodes have connections towards the same destination.

The edges might support multiple attributes: flow duration, nr. packets, etc.
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Financial Networks

V is the set of bank clients. E is the set of weighted transactions between two
clients. Anomalies as frauds reflected as abnormal patterns in the financial
transactions graph:

ring: the amount that is transfered over a cycle is nearly constant.

star: suspiciously many clients make transactions toward a common
single destination.

blackholes: nodes with high in-traffic (directed graphs).
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Social Networks

V is the set of clients. E is the set of connections/messages between clients.
Anomalies arise as malware/spam messages sent toward correct users, that
directs the user toward a malitious sites.

Simple solution: filtering an aggregated set of messages over a finite
time period.
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Modelling principles

1. Choose the best grah model that meets the data is modeled by:

Static (attributed) graphs

Dynamic (attributed) graphs (edge streams)

Multi-graphs
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Modelling principles

2. Define a specific ”normality” principle:

Local structure: the neighborhood of normal vertices is almost uniform
over the entire graph.

Similar weights: the nodes have similar weights on out-edges.

Uniformity: subgraphs of certain dimension are similar.

Proximity: normal objects stay close on the graph.
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Modelling principles

3. Design the algorithm based on the assumed ”normality”:

Feature extraction + Outlier Detection Method: (i) various features are
extracted from data in order to convert the graph topology into node
attributes; (ii) and then usual outlier detection methods are applied.

Matrix Factorization: the adjacency matrix is splited into low-rank factor
and sparse residual factor. The structure of residuals reveals possible
outliers.

Deep graph learning: the graph topology is aggregated and encoded
through deep learning layers of neural networks.
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Recap graph matrices

The main matrices associated to a given graph G = (V ,E) are adjacency
matrix, incidence matrix and Laplacian matrix.
Undirected case:

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 ,B =


1 0 1 1 0
1 1 0 0 0
0 1 1 0 1
0 0 0 1 1

 ,L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 .
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Recap graph matrices

The main matrices associated to a given graph G = (V ,E) are adjacency
matrix, incidence matrix and Laplacian matrix.
Directed case:

Lout =


3 −1 −1 −1
0 1 −1 0
0 0 1 −1
−1 0 0 1

 ,

A =


0 1 1 1
0 0 1 0
0 0 0 1
1 0 0 0

 , B =


−1 0 −1 1 −1 0
1 −1 0 0 0 0
0 1 1 0 0 −1
0 0 0 −1 1 1

 .
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Recap graph matrices

The main matrices associated to a given graph G = (V ,E) are adjacency
matrix, incidence matrix and Laplacian matrix.

Spectrum of Laplacian Λ(L) = {λ1(L), · · · , λn(L)}:

Λ(L) =


4
4
2
0

 (undirected case)

λn(L) always 0 (the sum on the lines is 0);

the multiplicity of null eigenvalues = number of components;

λn−1(L) is the Fiedler value (algebraic connectivity); the further from 0,
the more connected.
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Detection Algorithms: OddBall

Feature extraction: take the graph G = (V ,E) and for each node vi assign a
feature vector based on the vi ’s connectivity within G.

Examples fo features:

Ni : in - degree / out - degree

Ei : nr. of edges in egonet

Wi : total weight of neighborhood

λi : principal eigenvalues of egonet i .
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Detection Algorithms: OddBall

Feature extraction: take the graph G = (V ,E) and for each node vi assign a
feature vector based on the vi ’s connectivity within G.

Oddball: choose pairs of features and plot to find patterns of normal
behaviour

N vs. E : detect clique and stars

W vs. E : detect heavy vicinity

λ vs. W : detect single dominating edge
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Feature extraction example

red: LS to median values

blue: clique

black: stars
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Intro on low-rank factorization

PCA formulation: Let A ∈ Rn×n be the data matrix. Then

min
F ,G

∥A − FGT∥2
F

reveal a low-rank approximation of data.

FGT is the best low-rank approximation (encodes maximum of
information)

The residual R = A − FGT is the error reconstruction of data points.
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NrMF

Non-negative Residual Matrix Factorization (NrMF)
Data: An adjacency matrix of a bipartite graph A ∈ Rn×l , rank size r ;
Find: The low-rank approximation structure F · G and the residual matrix R
such that:

(i) A ≈ F · G;

(ii) R = A − F · G;

(iii) Rij ≥ 0 for all Aij > 0.

matrix R is an indicator for anomalies in graphs

Rij is constrained to be positive when there is an edge between the
nodes i and j

a large entry in R reflects strage interaction between two objects (e.g.
DDoS attack)
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NrMF formulations

Formulation 1:

min
F ,G,R

∑
(i,j):Aij>0

∥Rij∥2

s.t. Rij ≥ 0 ∀(i , j) : Aij > 0
R = A − F · G.

Equivalently

min
F ,G

∑
(i,j):Aij>0

(Aij − Fi: · G:j)
2

s.t. Fi: · G:j ≤ Aij ∀(i , j) : Aij > 0.

If we reduce the rank to 1, then we have to solve

min
f ,g

∑
(i,j):Aij>0

(Aij − figj)
2

s.t. figj ≤ Aij ∀(i , j) : Aij > 0.
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NrMF formulations

min
F ,G

∑
(i,j):Aij>0

(Aij − Fi: · G:j)
2

s.t. Fi: · G:j ≤ Aij ∀(i , j) : Aij > 0.

Challenges:

the problem formulation is not convex w.r.t. jointly F and G (we do not
seek global solution)

good news: the problem remains convex if we keep fixed one of the
factor F , or G. Moreover, it is quadratic and it can be solved with
standard solvers.

Alternating schemes arise naturally in this case.
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Alternating Minimization scheme

Input: The original matrix A, rank size r

1 Initialize F and G

2 While Not convergent do

1 Update: G = UpdateFactor(A,F )
2 Update: F = UpdateFactor(A′,G′)

3 endwhile

4 Output: R = A − FG.

Initialize the sequence (F k ,Gk )k≥0 and update each factor.

The main effort in each iteration is the call UpdateFactor .
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Factor subproblem

Denote Ω(j) = {i : Aij > 0}

min
G

n∑
j=1

∑
i∈Ω(j)

(Aij − Fi: · G:j)
2 =

n∑
j=1

∥FΩ(j):G(: j)− AΩ(j)j∥2
2

s.t. FΩ(j):G(: j)− AΩ(j)j ≤ 0, ∀j .

the problem is separable over j :

G∗(:, j) = arg min
G(:,j)

∥FΩ(j):G(: j)− AΩ(j)j∥2
2

s.t. FΩ(j):G(: j)− AΩ(j)j ≤ 0.

quadratic LS-type objective

linear inequality constraints
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UpdateFactor

Input: The original matrix A, factor F

1 For j = 1 : n do

1 Compute: a = A:j ,B = F (Ω(j), :)
2 For i = 1 : m do

1 if Aij > 0 then vi = Aij

2 else vi = inf
3 endif

3 endfor
4 Set: H = BT B,q = −2BT a,S = F
5 Solve: G:j = QPsolver(H,q,S, v).

2 endfor

3 Output: R = A − FG.

The QP step is very costly and it is repeated n times

Considering the complexity of a single QPsolver call to be O(dk ) then
the total cost of UpdateFactor is O(mnr2 + nr k ).
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UpdateFactor

Idea to reduce the cost: instead of finding a rank-r approximation

min
F ,G

∑
(i,j):Aij>0

(Aij − Fi:G:j)
2 s.t. constraints

find a rank-1 approximation at each iteration of the residual matrix

min
f ,g

∑
(i,j):Aij>0

(Rij − f (i)g(j))2 s.t. f (i)g(j) ≤ Rij ∀(i , j) : Aij > 0.
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Experiments: anomalies in bipartite graphs

Strange connection: It is a connection between two nodes which belong to
two remotely connected communities, respectively.
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Experiments

Port-scanning like behavior:It is a type-1 node that is connected to many
different type-2 nodes in the bipartite graph. For example, in an IP traffic
network, this could be an IP source which sends packages to many different
IP destinations (therefore it might be a suspicious port scanner)
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Experiments

DDoS like behavior: It is a type- 2 node that is connected to many different
type-1 nodes in the bipartite graph. For example, in an IP traffic network, this
could be an IP destination which receives packages from many different IP
sources (therefore it might be under DDoS, distributed denial-of-service,
attack)
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Experiments

Collusion type of fraud: It is a group of type-1 nodes and a group of type-2
nodes which are tightly connected with each other. For example, in financial
transaction network, this could be a group of users who always give good
ratings to another group of users in order to artificially boost the reputation of
the target group
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Experiments
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Modelling principles

Static (attributed) graphs

Dynamic (attributed) graphs (edge streams)
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Laplacian Anomaly Detection

Model:

let the sequence of weighted graphs {Gt}t≥0, where Gt = (Vt ,Et)

e = (i , j ,w) ∈ Et if e occured at timestamp t

edges can disappear and reappear at different moments

|Vt | = n

denote At and Lt = Dt − At the adjacency and Laplacian matrices,
respectively.
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Laplacian Anomaly Detection

Model:

let the sequence of weighted graphs {Gt}t≥0, where Gt = (Vt ,Et)

e = (i , j ,w) ∈ Et if e occured at timestamp t

edges can disappear and reappear at different moments

|Vt | = n

denote At and Lt = Dt − At the adjacency and Laplacian matrices,
respectively.

Problem
Given the sequence {Gt}t≥0, detection unusual patterns with respect to a
short/logn term window.
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Change point Detection

The goal is to find anomalous graphs Gt such that, given a scoring function
f : Gt → R, one of the following conditions holds:

|f (Gt)− f (GN)| ≥ δ

|f (Gt)− f (GW )| ≥ δ

where GN and GW are
normal behaviour of the
graphs in global context
and short-term context,
respectively.
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Change point Detection

First step to define f : encode {Gt}t≥0
into a sequence of Laplacians {Lt}t≥0
and compute SVD of each Lt .

actual result f (Gt) = σ(Lt) ∈ Rn.

node permutation invariant
measure

cost on a horizon of length T ?
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Change point Detection

In order to reduce complexity we can modify:
f (Gt) = σ(Lt) ∈ Rn → f (Gt) = σk (Lt) ∈ Rk .
Now the SVD is truncated to the first k singu-
lar values.
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Change point Detection

Second step: how to extract the normal behaviour over a fixed sliding window
of size w?

Possible answer: form the following matrix

Cw =

 | | | |
σt−w−1 σt−w−2 · · · σt−1

| | | |


and compute the left (maximal) singular vector.
On short the normality vector is computed as:

f (GW ) = u1(Cw ).

Anomaly Detection 31 / 35



Anomaly score

Third step: how to measure the abnormality of a given graph?

Possible answers:

Zt = |f (Gt)− f (Gw ) (distance)

Zt = 1 − f (Gt )
T f (Gw )

∥f (Gt )∥∥f (Gw )∥ (similarity)
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Results
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