
Anomaly Detection

Lab 2 - Basic anomaly detection algorithms

Andrei Hı̂ji

October 2024

In this lab we will use some basic anomaly detection algorithms like leverage
scores, KNN and LOF.

A few methods that will be useful to you throughout this lab session are:

• pyod.utils.data.generate data clusters is used to generate clusters of
synthetic data, its parameters include

– Number of training and test samples: n train=1000, n test=500

– Number of clusters and features: n clusters=2, n features=2

– Contamination level: contamination=0.1

– Characteristics of the clusters: size=’same’, density=’same’, dist=0.25

– random state=None

– return in clusters=False

• sklearn.datasets.make blobs is used to generate isotropic Gaussian
clusters (covariance matrix can be represented in this form: Σ = σ2I),
its parameters include:

– Number of samples: n samples=100

– Number of features: n features=2

– Centers and standard deviation of the clusters: centers=None, clus-
ter std=1.0,

– Bounding box for each cluster center when centers are generated at
random: center box=(-10.0, 10.0)

– shuffle=True

– random state=None

– return centers=False

• sklearn.model selection.train test split splits datasets into random
train and test subsets and include the parameters:

– Input data: *arrays

1



– Test data size and train data size: test size=None, train size=None

– random state=None

– shuffle=True

– stratify=None - used to split in a stratified fashion

• scipy.io.loadmat loads data from a MATLAB file and includes the fol-
lowing parameters:

– file name

– Dictionary in which to insert matfile variables: mdict=None

– appendmat=True : to append the .mat extension to the end of the
given filename

• pyod.utils.utility.standardizer transforms data to zero-mean and unit
variance; it includes the parameters:

– Training samples and test samples: X, X t=None

• pyod.models.combination.average takes the average of the outlier scores;
uses the following parameters:

– Score matrix of shape (n samples, n estimators): scores

– estimator weights=None - for weighted average

• pyod.models.combination.maximization takes the maximum score
and includes the parameter:

– Score matrix of shape (n samples, n estimators): scores

• numpy.quantile computes the q-th quantile of the data along the speci-
fied axis (the value below which the specified percentage of data falls); its
parameters include:

– Input array: a

– Probability or sequence of probabilities of the quantiles to compute.
Values must be between 0 and 1 inclusive: q

1 Exercises

1.1 Ex. 1

In this exercise we verify numerically the purpose of the leverage scores discussed
in class. Generate a random linear model y = ax1 + b + ϵ where ϵ is random
Gaussian noise with mean µ and variance σ2. For various values of µ, σ2 generate
data and compute the leverage scores for all the points. Create four types of
points: regular (low noise, close to the model), high variance on x, high variance
on y and finally high variance on both x and y. Plot all results, group in subplots
for the various values of noise variance. Mark on the plots the points with the
highest leverage scores. Repeat the exercise for the 2D case y = ax1+bx2+c+ϵ.

2



1.2 Ex. 2

Using the function generate data clusters generate a 2-dimensional dataset
with 400 train samples and 200 test samples that are organized in 2 clusters,
with 0.1 contamination. Train a KNN model from pyod.models.knn. Use 4
subplots in order to display using different colors (for inliers and outliers):

• Ground truth labels for training data

• Predicted labels for training data

• Ground truth labels for test data

• Predicted labels for test data

Use different values for the n neighbors parameter and observe how this
affects the detection of small clusters of anomalies. Also compute the balanced
accuracy for each parameter.

1.3 Ex. 3

In this exercise we will see the limitations of distance based algorithms like
KNN. Specifically, we will observe how KNN behaves when our data clusters
have different densities and how pyod.models.lof.LOF solves the problem by
considering the variations of the local densities of the datapoints. First, generate
2 clusters (200 and 100 samples respectively) with 2-dimensional samples using
(-10, -10) and (10, 10) as centers, 2 and 6 as standard deviations using
sklearn.datasets.make blobs() function. Then, fit KNN and LOF with the
generated data using a small contamination rate (0.07) and find the predicted
labels. Use 2 subplots to plot (using different colors for inliers and outliers) the
2 clusters and observe how the 2 models behave for different n neighbors.

3



1.4 Ex. 4

For this exercise we will need the cardio dataset from ODDS (https://odds.cs.
stonybrook.edu/cardiotocogrpahy-dataset/). Load the data using scipy.io.loadmat()
and use train test split() to split it into train and test subsets. Normalize
your data accordingly. You will use an ensemble of classifiers of the same
type (KNN or LOF) in order to create an average/maximization strategy
(average/maximum score will be returned). Create 10 KNN/LOF models
for which you vary parameter n neighbors from 30 to 120 (here you can use
other intervals/steps if you observe that they produce better results). Fit each
model, print the balanced accuracy (BA) for train/test data and store both the
train and test scores in order to use them later. Normalize both scores using
pyod.utils.utility.standardizer() and use pyod.models.combination.average()
and pyod.models.combination.maximization() to find the final scores for
the 2 strategies. For each of them find the threshold used for classification
(using numpy.quantile() with the known contamination rate of the dataset),
compute the predictions and print the balanced accuracy (BA).

4


