
Anomaly Detection

Lab 3 - Isolation Forest, LODA

Andrei Hı̂ji

November 2024

In this lab we will use anomaly detection algorithms like Isolation Forest and
LODA.

In order to useDeep Isolation Forest model from pyod you have to install
pythorch:

pip i n s t a l l torch

A few methods that will be useful to you throughout this lab session are:

• sklearn.datasets.make blobs is used to generate isotropic Gaussian
clusters (covariance matrix can be represented in this form: Σ = σ2I),
its parameters include:

– Number of samples: n samples=100

– Number of features: n features=2

– Centers and standard deviation of the clusters: centers=None, clus-
ter std=1.0,

– Bounding box for each cluster center when centers are generated at
random: center box=(-10.0, 10.0)

– shuffle=True

– random state=None

– return centers=False

• sklearn.model selection.train test split splits datasets into random
train and test subsets and include the parameters:

– Input data: *arrays

– Test data size and train data size: test size=None, train size=None

– random state=None

– shuffle=True

– stratify=None - used to split in a stratified fashion

• sklearn.metrics.roc auc score computes ROC AUC:

1



– True labels: y true

– Obtained scores: y scores

• scipy.io.loadmat loads data from a MATLAB file and includes the fol-
lowing parameters:

– file name

– Dictionary in which to insert matfile variables: mdict=None

– appendmat=True : to append the .mat extension to the end of the
given filename

• pyod.utils.utility.standardizer transforms data to zero-mean and unit
variance; it includes the parameters:

– Training samples and test samples: X, X t=None

• numpy.quantile computes the q-th quantile of the data along the speci-
fied axis (the value below which the specified percentage of data falls); its
parameters include:

– Input array: a

– Probability or sequence of probabilities of the quantiles to compute.
Values must be between 0 and 1 inclusive: q

• numpy.random.uniform draws samples from a uniform distribution; its
parameters include:

– Lower boundary and Upper boundary of the output interval : low,
high

– Output shape: size

• numpy.histogram computes the histogram of a 1D dataset; its parame-
ters include:

– Input data : a

– Number of equal-width bins in the given range (if it’s an int) or a
monotonically increasing array of bin edges (if it’s a sequence)

– The lower and upper range of the bins: range

1 IForest main ideas

Anomaly Score:

s(x, n) = 2−
E(h(x))

c(n)

• E(h(x)) - average of h(x) from all the iTrees of the IForests

2



• c(n) - average path length of an iTree (average path length of unsuccessful
search in BST)

Main parameters:

• sub-sampling size ψ = 256 (height limit l = 8)

• the ensemble size t = 100

2 Exercises

2.1 Ex. 1

1. In the first exercise you will design a simpler variant of LODA. First you
will generate a 2D dataset that follows a standard normal distribution
(500 points) using sklearn.datasets.make blobs.

2. Then you will randomly generate 5 unit-length projection vectors (you
can use numpy.random.multivariate normal with (0, 0) mean and
identity matrix as covariance matrix) that will be used to generate 1D
histograms (for the projected values). You will compute the correspond-
ing histograms with equal-width bins using numpy.histogram (for the
range parameter use a larger interval than the range of the projected val-
ues). For each histogram compute the probability corresponding to each
bin and use them to compute the anomaly score of a sample as the mean
of the probabilities (corresponding to each histogram).

3. For testing, generate a dataset with 500 points from a uniform distribution
(between -3 and 3 using np.random.uniform). Plot the points in the
test dataset using a colormap (related to the anomaly scores).

4. Use different number of bins and see how this affects the score map.

2.2 Ex. 2

1. In this exercise we will try to see how the standard Isolation Forest al-
gorithm introduces some artifacts when computing the anomaly scores.
You will generate 2 clusters of 2-dimensional data using make blobs()
function. The 2 clusters will have (10, 0) and (0, 10) as centers, 1 as
standard deviation and 500 samples each.

2. You will fit an IForest model (from pyod.models.iforest) using this
data (and a contamination rate of 0.02). Test data will be generated from
a uniform distribution over the interval (-10, 20) using np.random.uniform
and will contain 1000 samples.

3. Find the anomaly scores for the test data and plot the samples using a col-
ormap (related to the anomaly scores). Observe the artefacts introduced
by the axis-parallel separating hyperplanes used by standard IForest.

3



4. Repeat the same procedure for Deep Isolation Forest model (DIF from
pyod.models.dif) and LODA (from pyod.models.loda) and use 3 sub-
plots for the 3 figures.

5. Try different number of neurons for the hidden layers used by DIF and
different number of bins for LODA. Try to explain why the score maps
for LODA look that way.

6. Redo all the steps in 3D (use (0, 10, 0) and (10, 0 , 10) as centers for
the two clusters).

2.3 Ex. 3

1. For this exercise we will need the shuttle dataset from ODDS (https:
//odds.cs.stonybrook.edu/shuttle-dataset/). Load the data using
scipy.io.loadmat() and use train test split() to split it into train and
test subsets (use 40% of data for testing). Normalize your data accord-
ingly.

2. Fit IForest, LODA and DIF using the training data and compute the
balanced accuracy (BA) and the area under the curve (ROC AUC -
using sklearn.metrics.roc auc score) for each model. Compute the
mean BA and ROC AUC obtained for 10 different train-test splits for
each of the models.

4


