Anomaly Detection
Lab 5 - PCA, Autoencoders

Andrei Hiji
December 2024

In this lab we will use anomaly detection algorithms based on PCA and
Autoencoder.

1 PCA main ideas

o PCA starts from the covariance matrix of the mean-centered data matrix

X eNxd

XTx
N
such that ¥ € R¥? where element Y;; is the covariance between data
dimension ¢ and j

)y = PAPT

the EVD of & = PAP" item A is diagonal and contains the eigenvalues
between Az and Auin

P @4 represents the orthonormal eigenvectors of the covariance corre-
sponding to A
Algorithm that computes anomaly score based on distances along
all eigenvectors:

1. EVD: ¥ = PAPT

2. Transform: X' = XP

3. Normalize: X' = X'A 7T

4. Anomaly score: squared Euclidean distance of the transformed data

point from the center of the transformed data

A few methods that will be useful to you throughout this lab
session are:

e numpy.linalg.eigh returns the eigenvalues and eigenvectors of a complex

Hermitian (conjugate symmetric) or a real symmetric matrix; its param-
eters include:



— Hermitian or real symmetric matrix whose eigenvalues and eigenvec-
tors are to be computed: a

numpy.random.multivariate_normal draws random samples from a
multivariate normal distribution; its parameters include:
— mean of the N-dimensional distribution: mean

— covariance matrix of the distribution (must be symmetric and positive-
semidefinite)

— size of the generated dataset: size
numpy.cumsum returns the cumulative sum of the elements along a
given axis; its parameters include:

— input array: a

— axis along which the cumulative sum is computed: axis - optional
generate_data() is used to create a synthetic dataset where normal sam-
ples are generated using a multivariate Gaussian distribution while outliers
are generated by a uniform distribution; its parameters include:

— number of training/testing points: n_train, n_test

number of features: n_features

proportion of outliers: contamination

range of values: offset

sklearn.model _selection.train_test_split splits datasets into random
train and test subsets and include the parameters:

Input data: *arrays

Test data size and train data size: test_size=None, train_size=None
— random_state=None
— shuffle=True

— stratify=None - used to split in a stratified fashion
sklearn.metrics.roc_auc_score computes ROC AUC:

— True labels: y_true

— Obtained scores: y_scores

scipy.io.loadmat loads data from a MATLAB file and includes the fol-
lowing parameters:

— file_name

— Dictionary in which to insert matfile variables: mdict=None



— appendmat=True : to append the .mat extension to the end of the
given filename

e pyod.utils.utility.standardizer transforms data to zero-mean and unit

2.1

variance; it includes the parameters:
— Training samples and test samples: X, X_t=None

numpy.quantile computes the g-th quantile of the data along the speci-
fied axis (the value below which the specified percentage of data falls); its
parameters include:

— Input array: a
— Probability or sequence of probabilities of the quantiles to compute.
Values must be between 0 and 1 inclusive: g

tensorflow.clip_by_value clips tensor values to a specified min and max;
its parameters include clip_-value_min and clip_value_max; any val-
ues less than clip_value_min are set to clip_value_min and any values
greater than clip_value_max are set to clip_value_max

Exercises

Ex. 1

. In the first exercise you will generate a 3D dataset with 500 points using

np.random.multivariate_normal function with the mean vector [5, 10,
2] and the covariance matrix [[3, 2, 2], [2, 10, 1], [2, 1, 2]] and plot it
(3D). Then you will perform the PCA steps from the course (center data,
compute covariance matrix, EVD).

. Plot in the same figure both the cumulative explained variance (com-

puted with the sorted [descending] eigenvalues and the numpy.cumsum
function) with the pyplot.step function and the individual variances (re-
specting the order) - using the pyplot.bar function.

. Project the data in the new space and identify the outliers based on the de-

viation of the values over the dimension corresponding to the 3rd principal
component (compared to the mean of all the values of the same compo-
nent). Use 0.1 as contamination rate and the numpy.quantile function
in order to find the corresponding threshold and predict the labels. Plot
the dataset again (using a different color for points labeled as anomalies).
Repeat the same steps for the second principal component.

. Project the data in the new space and identify the outliers based on the

normalized distance (by the corresponding standard deviation) of the data
points to the centroid (in the new space) along all the principal components
(follow the steps from the algorithm in the first part of the lab). Plot the
dataset again (using a different color for points labeled as anomalies)



2.2 Ex. 2

1. In this exercise you will use the shuttle dataset. Split the data in a train-
ing set and a testing set (60% of data). Standardize your data and fit a
pyod.models.pca.PCA model with the training set using the real con-
tamination rate of the training set. Plot the cumulative explained variance
and the individual variances as in the previous exercise (you can access
the variances with the explained_variance_ attribute).

2. Compute the balanced accuracy for both the train and test sets. Then fit
the pyod.models.kpca. KPCA model with the same training data and
compute the scores again.

23 Ex. 3

For the last 2 exercises you will need to install tensorflow using pip install
tensorflow.

1. In this exercise you will use the shuttle dataset from ODDS. Load the data
using scipy.io.loadmat() and use train_test_split() to split it into train
and test subsets (use 50% of data for testing). Use min-max normalization
to bring your train data in the [0-1] range.

2. Design an Autoencoder class that subclasses keras.Model. Use the
keras.Sequential model to create encoder and decoder submodels that
contain only keras.layers.Dense layers. The 2 submodels should con-
tain layers with [8, 5, 3] and [5, 8, 9] output units. Use relu activation
function for each layer except the last one (from the decoder), which will
use sigmoid activation.

3. Compile your model using adam optimizer and mse loss and fit it with
your training data using 100 epochs and a batch size of 1024 (use the
test data as validation data in the trainig process). Plot the training and
validation loss.

4. In order to obtain the scores for the training data pass it through the
autoencoder and get the reconstruction error for each sample. Compute
a threshold that will be used to classify data with the numpy.quantile
function and the contamination rate of the dataset. Compute the balanced
accuracy for both the training and testing set.

24 Ex. 4

1. In this exercise we will use the mnist dataset from tensorflow.keras.datasets.mnist.
After you load the dataset with tensorflow.keras.datasets.mnist.load_data()
you will normalize it by dividing with 255. In order to simulate anomalies,
you will add some noise to the images with tensorflow.random.normal
(multiplied by a factor of 0.35). You will use tensorflow.clip_by_value
to keep the range of the pixels [0, 1].



2. Design a Convolutional Autoencoder class that uses the keras.Sequential
model to create encoder and decoder submodels that contain keras.layers.Conv2D
and keras.layers.Conv2DTranspose layers. The encoder will contain:

e 1 Conv2D layer with 8 (3 X 3) filters, relu activation, strides=2 and
padding - ’same’

e 1 Conv2D layer with 4 (3 X 3) filters and the rest of params as
above

The decoder will consist of:

e 1 Conv2DTranspose layer with the same parameters as the last
layer of the encoder

e 1 Conv2DTranspose layer with the same parameters as the first
layer of the encoder

e 1 Conv2D layer with 1 filter with sigmoid activation that will re-
construct the original image

3. Compile your model using adam optimizer and mse loss and fit it with
your training data using 10 epochs and a batch size of 64 (use the test
data as validation data in the trainig process). Use only the original
train data for training. Compute the reconstruction loss for the training
data and a threshold (that will be the mean of the reconstruction errors
+ their standard deviation). Based on the threshold and the obtained
reconstruction errors classify both the original test images and the ones
that have the added noise (and compute the corresponding accuracy).

4. Plot in the same figure, on four rows, 5 test images: on the first row -
the original ones, on the second one - the images with the added noise, on
the third, the reconstructed images obtained from the original ones and
on the last row the reconstructed images obtained from the images with
added noise.

5. Modify the training stage in order to obtain a Denoising Autoencoder and
print the same figure again.



