Anomaly Detection
Lab 6 - Graph-based anomaly detection
algorithms

Andrei Hiji
January 2025

In this lab we will use algorithms capable of identifying different types of
anomalies in graphs. You will have to install the following libraries:

e pip install networkx

e pip install torch torch-geometric

1 Graph anomaly detection main ideas

e A type of graph convolutional operator that we will use in this lab is
GCNConv from from torch_geometric.nn.

X' =D 3AD X0
where A= A+ I is the adjacency matrix with inserted self-loops and
D;; =X;—0A;; is the diagonal degree matrix

A few methods that will be useful to you throughout this lab
session are:

e numpy.linalg.eigh returns the eigenvalues and eigenvectors of a complex
Hermitian (conjugate symmetric) or a real symmetric matrix; its param-
eters include:

— Hermitian or real symmetric matrix whose eigenvalues and eigenvec-
tors are to be computed: a

e sklearn.metrics.roc_auc_score computes ROC AUC:

— True labels: y_true

— Obtained scores: y_scores

e scipy.io.loadmat loads data from a MATLAB file and includes the fol-
lowing parameters:

— file_name
— mdict=None - dictionary in which to insert matfile variables

— appendmat=True - to append the .mat extension to the end of the
given filename

numpy.loadtxt loads data from a text file and includes the following
parameters:

— file_name

networkx.draw draws a graph G with Matplotlib; it includes the follow-
ing parameters:

— G - a networkx graph

— node_color - an array with colors for each node of the graph (same
order as when iterating through nodes of the graph)

networkx.union combines 2 graphs in a single one; it includes the fol-
lowing parameters:

— G, H - the 2 graphs

— rename - node names of G and H can be changed by specifying the

[)

tuple rename=(‘G‘,’H’); node “u” in G is then renamed “Gu” and

[}

v” in H is renamed “Hv”

Graph.size returns the number of edges or total of all edge weights; it
can include the edge attribute that holds the numerical value used as a
weight; ff None, then each edge has weight 1.

networkx.ego_graph returns induced subgraph of neighbors centered
at the specified node n within a given radius; it includes the following
parameters:
— G - a NetworkX Graph
— n - a single node
— radius - number, optional; includes all neighbors of distance < radius
from node n.

torch.Tensor.backward() - computes the gradient of current tensor

torch.optim.Optimizer.step() - performs a single optimization step to
update parameters.

torch.optim.Optimizer.zero_grad() - resets the gradients of all opti-
mized tensors

torch.optim.Adam - implements Adam algorithm and includes the fol-
lowing parameters:

— params (iterable) — iterable of parameters to optimize
— Ir — learning rate (default: le-3)

2.1

2.2

Exercises

Ex. 1

. In the first exercise you will implement a version of the OddBall al-

gorithm discussed in the course. You will first load the dataset from
the ca-AstroPh.txt file (each line contains an edge of the graph) and
build the corresponding undirected graph using networkx.Graph. Each
appearance of an edge in the dataset will increase the weight of the
edge by one (you can store the weight for each edge with a key using
G[nodel][node2][”weight”] = weight).

Extract the four features from the egonet (subgraph consisting of all neigh-
bours) corresponding to each node:

e N; - number of neighbors
e FE; - number of edges in egonet ¢
e IV, - total weight of egonet i

e)\, - principal eigenvalue of the weighted adjacency matrix of egonet

i
Store the features in the Graph object using nx.set_node_attributes

Compute the anomaly score for each node by fitting a LinearRegres-
sion model (from sklearn.linear_model) with the logarithmic scale of the
2 features (E; and N; - which should detect near-cliques and stars). The
anomaly score will be:

max(y;, Cx;?)

score; = log(|y; — Cxie‘ +1)

min(y;, Cx;%)
given the power-law equation y = Cz?

Sort the scores of the nodes in descending order and draw the graph using
nx.draw(). Using the node_color parameter for the specified function,
draw the nodes corresponding to the biggest 10 scores with a different
color. Use just the first 1500 rows from the file when generating the
graph.

Modify the anomaly score as the sum of the normalized score that was
computed earlier and the score obtained by LOF (for the pair of E; and
N; features) and draw again the graph using a different color for the nodes
corresponding to the biggest 10 scores.

Ex. 2

. In this exercise we will generate some types of graph anomalies using net-

workx package. You will first generate a regular graph with 100 nodes

where each one will have a degree 3 using networkx.random_regular_graph.

You will merge it with another graph that will contain 10 cliques with 20

nodes each. This one will be generated using networkx.connected_caveman_graph().
Both will be merged using networkx.union() and some random edges

will be added in order to build a connected graph. Draw the resulted

graph. Use the model developed in the first exercise to detect the first 10

nodes that are most probably part of a clique in the final merged graph

(using E; and N;) and draw them using a different color.

. Here you will generate some HeavyVicinity anomalies. You will gener-
ate a regular graph with 100 nodes where each one will have a degree 3
and another one that has 100 nodes and each member node has degree 5
(using networkx.random_regular_graph). You will merge them using
networkx.union() and then you will assign weight 1 for each edge using
G.add_edge(edge[0], edge[1], weight=1) while iterating over all the
edges. You will pick 2 random nodes and you will add 10 to the weights
of all the edges from their egonets (using G[nodel][node2][”weight”]
+=10). Then you will use the same model to draw with a different color
the 4 nodes that have the greatest score (using W; and E; - which should
detect the heavy vicinities).

Ex. 3

. In this exercise we will design a Graph Autoencoder (GAE) capable of
ranking anomalous nodes from an Attributed Graph (based on reconstruc-
tion error). For this, we will use GCNConv layers from torch_geometric.nn.
The autoencoder will contain an Encoder that will encode both structure
information and node attributes, and two separate decoders. One will
reconstruct the attributes of the nodes from the latent representations of

the encoder and the other one will reconstruct the adjacency matrix (from

the same latent representations).

. Load the ACM dataset (from ACM.mat file) and extract the attributes of

the nodes (” Attributes” key), the adjacency matrix (”Network” key) and

the labels of the nodes (”Label” key). You can convert the adjacency ma-

trix from the sparse matrix format in edge list using from_scipy_sparse_matrix()
function from torch_geometric.utils.convert

. Design a graph autoencoder that subclasses the torch.nn.Model class.
This will contain the encoder and the two decoder sub-models (these will
also subclass torch.nn.Model). The encoder will contain:

e 1 GCNConv layer which encodes the input samples in samples of
size 128, followed by a relu activation

e 1 GCNConv layer which encodes the output of the previous layer
to 64-sized samples, followed by a relu activation

The attribute decoder will consist of the same 2 layers (but with reversed
input/output size).

The structure decoder will contain one GCNConv layer (that will keep
the dimension of the latent representations), followed by a relu activation.
Then, the structure decoder will return the ZQZT product (where Z is the
output of the relu activation) in order to match the size of the adjacency
matrix.

You have to define the forward method for each of the 3 models (in order
to define the computations performed when data is passed through the
network).

. You have to define the following custom loss function that takes as in-
put the original attributes of the nodes - X, the reconstructed ones - X ,
the original adjacency matrix - A, the reconstructed one - A and the o
parameter which balances the importance of attribute and structure re-
construction (for alpha you will use a value of 0.8):

L=a|X - X|F+ (1 -a)lA-AlF

. You have to define your training procedure. First you will define your
optimizer (Adam, with a learning rate of 0.004) and then you will perform
the necessary computations for each epoch:

reset the gradients using optimizer.zero_grad()

e pass data through the autoencoder and get the reconstructions for
attributes and adjacency matrix

e compute the loss
e compute the gradients using backward() method
e update the network weights using optimizer.step()

e at every 5 epochs compute the ROC AUC score for the data based
on the scores represented by the reconstruction errors

